• 제목/요약/키워드: Positive resistivity temperature coefficient

검색결과 97건 처리시간 0.025초

$TiN_xO_y/TiN_x$다층 박막을 이용한 고저항 박막 저항체의 특성평가 (Characteristic and Electrical Properties of $TiN_xO_y/TiN_x$ Multilayer Thin Film Resistors with a High Resistance)

  • 박경우;허성기;안준구;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.19-19
    • /
    • 2009
  • TiNxOy/TiNx multilayer thin films with a high resistance (~ k$Omega$) were deposited on SiO2/Si substrates at room temperature by sputtering. The TiNx thin films show island and smooth surface morphology in samples prepared by dc and rf magnetron sputtering, respectively. TiNxOy/TiNx multilayer has been developed to control temperature coefficient of resistance (TCR) by the incorporation of TiNx layer (positive TCR) inserted into TiNxOy layers(negative TCR). Electrical and structural properties of sputtered TiNxOy/TiNx multilayer films were investigated as a function of annealing temperature. In order to achieve a stable high resistivity, multilayer films were annealed at various temperatures in oxygen ambient. Samples annealed at 700 oC for 1 min exhibit a good TCR value and a stable high resistivity.

  • PDF

$BaTiO_3$계 세라믹 박막의 열처리에 따른 미세구조변화 (Varition Microstructure for Heat treatment of Thin Films $BaTiO_3$ System)

  • 박춘배;송민종;김태완;강도열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.293-295
    • /
    • 1994
  • Barium Titanate ($BaTiO_3$) is one of the few titanateds which is cubic at room temperature. It has the perovskite structure, high dielectric constant (${\varepsilon}_r=300$) and a small temperature coefficient of resistance due to it's Low transition temperature ($Tc=120^{\circ}c$). PTCR (Positive Temperature Coefficient of Resistivity) thermistor in thin film $BaTiO_3$ system was prepared by using radio frequency (13.56MHz) and BC magnetron sputter equipment. Polycrystalline, and surface structure characteristics of the specimens were measured by X-ray diffraction (D-Max3, Rigaku, Japan), SEM(Scanning Electron Microscopy: M. JSM84 01, Japan), respectively. Temperature at below $600^{\circ}C$, $1000^{\circ}C$ to $700^{\circ}C$, and above $1100^{\circ}C$ for spotted $BaTiO_3$ thin films showed the amorphous, degree of crystal growth, and polycrystalline, respectively.

  • PDF

상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향 (Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering)

  • 주진영;박미림;신용덕;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

$TiB_2$ 첨가량에 따른 $\beta$-SiC-$TiB_2$ 복합체의 전기적.기계적 특성 평가 (The Estimation for Mechanical and Electrical Properties of $\beta$-SiC-$TiB_2$ Composites by $TiB_2$)

  • 박미림;신용덕;주진영;최광수;이동윤;소병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.75-77
    • /
    • 2001
  • The mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electro conductive ceramic composites were investigated as functions of the transition metal of $TiB_2$. The result of phase analysis for the SiC-$TiB_2$ composites by XRD revealed $\alpha$-SiC(6H). $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density showed the lowest 84.8% for the SiC-$TiB_2$ composites added with 39vol.%$TiB_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of $7.8\;MPa{\cdot}m^{1/2}$ for composites added with 39vol.%$TiB_2$ under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%$TiB_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%$TiB_2$ composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

SiC 전도성 세라믹 복합체의 특성에 미치는 TiB$_2$의 영향 (Effect of TiB$_2$on Properties of SiC Electroconductive Ceramic Composites)

  • 신용덕;박미림;소병문;이동문
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권4호
    • /
    • pp.141-146
    • /
    • 2002
  • The mechanical and electrical properties of the pressureless sintered SiC-TiB$_2$electroconductive ceramic composites were investigated as functions of the transition metal of TiB$_2$. The result of phase analysis for the SiC-TiB$_2$ composites by XRD revealed $\alpha$-SiC(6H), TiB$_2$, and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phases. The relative density showed the lowest 84.8% for the SiC-TiB$_2$composites added with 39vol.%TiB$_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 7.8 MPa.m$^{1}$2/ for composites added with 39vol.%TiB$_2$under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%TiB$_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%TiB$_2$composites was all positive temperature coefficient resistance(PCTR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.EX>.

$BaTiO_3$계 박막의 소결온도에 따른 미세구조와 전기적 특성 (Electrical Characteristics and Microstructure of Thin Films $BaTiO_3$ depending on The Sintering Temperature)

  • 김덕규;전장배;박춘배;송민종;강용철;박해암;소병문;김태완;강도열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1573-1576
    • /
    • 1997
  • Thin films of $BaTiO_3$ system were prepared by radio frequency (rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat - treatment temperatures. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films shows that the specimen heat treated in between 900 and 1100[$^{\circ}C$] shows a grain growth. At 1100[$^{\circ}C$], the specimen stops grain-growing and becomes a crystal. A resistivity-temperature characteristics of the specimen depends on the doping concentrations of Mn.

  • PDF

Structural and electrical properties of the NiCr thin film resistors deposited at various temperatures on $SiO_2$/Si substrate

  • Phuong, Nguyen Mai;Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Kim, Chang-Soo;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.337-338
    • /
    • 2006
  • The 200 nm thick-NiCr films grew on $SiO_2$/Si substrates at various deposition temperatures by a dc magnetron co-sputtering technique were characterized for the variation of film texture. The resistivity of the films decreases with increasing deposition temperature and temperature coefficient of electrical resistance (TCR) varies from negative value to a positive one with increasing deposition temperature. The NiCr films deposited at $300^{\circ}C$ exhibit 4 ppm/K being near zero TCR, resulting in TCR suitable for $\pi$-type attenuator applications.

  • PDF

Surface Morphology and Electron Transport Properties of Composite Films by Poly-N-vinylcarbazole/Polyaniline

  • Basavaraja, C.;Jo, Eun-Ae;Kim, Bong-Sung;Mallikarjuna, H.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2967-2972
    • /
    • 2010
  • Poly-N-vinylcarbazole/polyaniline (PVK-PANI) composites are synthesized by varying target loading concentrations of aniline (0.025 - 0.1 M). The surface morphology of the composites is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The temperature-dependent DC conductivity of PVK-PANI composite films was studied at the temperature range of 300 - 500 K. The data suggest that the conductivity increase with an increase in aniline concentration in the composite with an increase in temperature. Further based on the conductivity behavior we can suggest that the PVK-PANI composites show a semiconducting behavior with a positive temperature coefficient of resistivity (TCR). The enhanced conductivity and the positive TCR of the PVK-PANI composite films may be due to the strong interaction between PANI and PVK in the composite films.

화재감지센서 활용을 위한 적층헝 PTC서미스터의 특성에 관한 연구 (A Study on the Characteristics of the Multilayer-Type PTC Thermistor for Fire Detection Sensor)

  • 추순남;백동현
    • 한국화재소방학회논문지
    • /
    • 제19권2호
    • /
    • pp.75-80
    • /
    • 2005
  • 적충형 PTC 서미스터의 특성연구를 위해 $(0.90Ba+0.05Sr+0.05Ca)TiO_3+0.01TiO_3+0.01SiO_2+0.0008MnO_2+0.0018Nb_2O_5$와 같은 실험조성식을 설정한 후 표면실장(SMD) 적층형 PTC 시편을 제작하였다. 그 결과 상온 비저항 값을 크게 낮출 수 있고 용도에 따라 전류용량을 크게 할 수 있었으나 적층화로 인해 peak 비저항이 크게 낮아지고 열용량이 커짐으로써 스위칭(switching)시간이 늦어지는 점을 확인하였다. 전압-전류 특성에서는 적층수가 증가할수록 초기 최대전류값이 증가하며 큐리점에 대응하여 저항값이 급격히 커지는 전이전압(전계)도 증가함을 보였다. 그러나 인가전압(전계)을 증가시킬 경우 peak 비저항값을 높일 수 있어 스위칭시간을 줄일 수 있다 이 소자는 화재감지기의 센서로 활용될 수 있다.

$Nb_2O_5$가 도핑된 (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ 무연 세라믹스의 PTCR 효과 (The PTCR Effect in Lead-free (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ Ceramics Doped with $Nb_2O_5$)

  • 정영훈;박용준;이영진;백종후;이우영;김대준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.52-52
    • /
    • 2008
  • The positive temperature coefficient of resistivity (PTCR) effect in (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ doped with $Nb_2O_5$ was investigated. $(Bi_{1/2}K_{1/2})TiO_3$ (BKT) is more environment-friendly than $PbTiO_3$ in order to use in PTC thermistors. The incorporation of 1 mol% BKT to $BaTiO_3$ increased the Curie temperature (Tc) to $148^{\circ}C$. Doping of $Nb_2O_5$ to $Ba_{0.99}(Bi_{0.5}K_{0.5})_{0.01}TiO_3$ (BaBKT) ceramic has enhanced its PTCR effects. For the sample containing 0.025 mol% $Nb_2O_5$, it showed good PTCR properties; low resistivity at room temperature (${\rho}_r$) of 30 $\Omega{\cdot}cm$, a high PTCR intensity of approximately $3.3\times10^3$, implying the ratio of maximum resistivity to minimum resistivity (${\rho}_{max}/{\rho}_{min}$) in the measured temperature range, and a large resistivity temperature factor (a) of 13.7%/$^{\circ}C$ along with a high Curie temperature (Tc) of $167^{\circ}C$. In addition, the cooling rate of the samples during the sintering process had an influence on their PTCR behavior. All the samples showed the best ${\rho}_{max}/{\rho}_{min}$ ratio when they have cooled down at a rate of $600^{\circ}C$/min.

  • PDF