• Title/Summary/Keyword: Pore Volume

Search Result 832, Processing Time 0.025 seconds

Investigation on CO Adsorption and Catalytic Oxidation of Commercial Impregnated Activated Carbons (상용 첨착활성탄의 일산화탄소 흡착성능 및 촉매산화반응 연구)

  • Ko, Sangwon;Kim, Dae Han;Kim, Young Dok;Park, Duckshin;Jeong, Wootae;Lee, Duck Hee;Lee, Jae-Young;Kwon, Soon-Bark
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.513-517
    • /
    • 2013
  • We investigated the properties of impregnated activated carbons, a commercial adsorbent for the individual protection equipment, and examined CO adsorption and oxidation to $CO_2$. The surface area, pore volume and pore size were measured for four commercial samples using Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET/BJH), and atomic compositions of the sample surface were analyzed based on SEM/EDS and XPS. Impregnated activated carbons containing Mn and Cu for fire showed the catalytic CO oxidation to $CO_2$ with a high catalytic activity (up to 99% $CO_2$ yield), followed by the CO adsorption at an initial reaction time. On the other hand, C: for chemical biologial and radiological (CBR) samples, not including Mn, showed a lower CO conversion to $CO_2$ (up to 60% yield) compared to that of fire samples. It was also found that a heat-treated activated carbon has a higher removal capacity both for CO and $CO_2$ at room temperature than that of untreated carbon, which was probably due to the impurity removal in pores resulted in a detection-delay about 30 min.

Influence of the Micropore Structures of PAN-based Activated Carbon Fibers on Nerve Agent Simulant Gas (DMMP) Sensing Property (PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향)

  • Kang, Da Hee;Kim, Min-Ji;Jo, Hanjoo;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.191-195
    • /
    • 2018
  • In this study, the influence of microporous structures of activated carbon fibers (ACFs) on dimethyl methylphosphonate (DMMP) gas sensing properties as a nerve agent simulant was investigated. The pore structure was given to carbon fibers by chemical activation process, and an electrode was fabricated for gas sensors by using these fibers. The PAN based ACF electrode, which is an N-type semiconductor, received electrons from a reducing gas such as DMMP, and then electrical resistance of its electrode finally decreased because of the reduced density of electron holes. The sensitivity of the fabricated DMMP gas sensor increased from 1.7% to 5.1% as the micropore volume increased. It is attributed that as micropores were formed for adsorbing DMMP whose molecular size was 0.57 nm, electron transfer between DMMP and ACF was facilitated. In conclusion, it is considered that the appropriate pore structure control of ACFs plays an important role in fabricating the DMMP gas sensor with a high sensitivity.

Hot Water Resistance of Polymer Mortar Composites Depending on Unsaturated Polyester Resin Types (불포화폴리에스테르 수지의 형태에 따른 폴리머 모르타르 복합재료의 내열수성)

  • Hwang, Eui-Hwan;Song, Min-Kyu;Kim, Yong-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2018
  • The ortho- and iso- type unsaturated polyester resins were synthesized and used as a polymer binder of the polymer mortar composite. Styrene monomer and acrylonitrile were used as a diluent for the unsaturated polyester resin. Methyl ethyl ketone peroxide (MEKPO) and cobalt octoate (CoOc) were used as a curing agent and an accelerator, respectively. Four kinds of unsaturated polyester resins were prepared according to types of the resin and diluent, and used as a polymer binder in the preparation of the specimen. A total of 16 polymer mortar specimens were prepared according to the added amount of the polymer binder and subjected to a hot water resistance test, followed by compressive and flexural strength tests, and pore and SEM analyses. As a result, it was found that the strength of the specimen using the iso-type unsaturated polyester resin as the polymer binder was better than that of using the ortho-type unsaturated polyester resin. The total pore volume and diameter measured after the hot water resistance test were reduced compared to the values before the test. In the micrographs observed before the hot water resistance test, the polymer binder, filler and fine aggregate were firmly combined to the co-matrix, but the polymer binder was mostly decomposed in the micrographs observed after the test.

A Study on the Basic Characteristics of In-situ Soil Flushing Using Surfactant (계면활성제를 이용한 원위치 토양세정 기법 적용을 위한 기초 특성 연구)

  • 최상일;소정현;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.87-91
    • /
    • 2002
  • Lab scale batch and column tests were performed to investigate the treatability of petroleum contaminated soil using the in-situ soil flushing method. The pyrex column (4.5$\times$25 cm) was used to investigate optimal washing agent, surfactant concentration, mixing ratio, and inlet velocity. The miked surfactant of $POE_{14}$ and SDS were determined as ideal systems for the batch tests. From the results of preliminary tests, mixed surfactant was found to be more harmful for microorganisms. So $POE_{5}$ and $POE_{14}$ were chosen as the surfactant system for the batch study. The washing efficiency for the diesel contaminated soil was increased until 1 %, and decreased after l %. When applied as selected mixed surfactant, the ideal mixed ratio was recognized as 1:1. Therefore we selected miked surfactant $POE_{5}$ and $POE_{14}$, surfactant concentration 1%, and mixed ratio 1:1 for the remediation of diesel contaminated soil. In column tests, the total removal efficiency was improved as the flux of washing agent was increased. At the same pore volume, small flux showed better removal efficiency.

Physicochemical Changes of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도가 목탄의 물리·화학적 특성에 미치는 영향)

  • Jo, Tae-Su;Choi, Joon-Weon;Lee, Oh-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.53-60
    • /
    • 2007
  • Carbon content, properties of micro-pore, and chemical properties of the charcoal prepared from wood powder, wood fiber, and bark of Abies sibirica Ledeb at different temperatures were investigated. The yield of charcoal decreased with increasing the carbonization temperature. The yield of bark charcoal was higher than those of wood and wood fiber charcoal. The content ratio of carbon atom in the charcoal increased with increasing the carbonization temperature, whereas those of hydrogen and oxygen atom were decreased. Ash content of bark charcoal was also higher than those of wood and wood fiber charcoal. The specific surface area of wood and wood fiber charcoal was greater than that of bark charcoal. In all charcoal, the specific surface area and the volume of micro-pore were highest when the carbonization temperature was $600^{\circ}C$, however they tended to decrease when the temperature was reached to $800^{\circ}C$. For the functionality test of chemical groups on the charcoal surface, adsorption test have performed against acidic (HCl) and basic chemicals (NaOH, $Na_2CO_3$, and $NaHCO_3$). As carbonization temperature increased, adsorption amount of HCl increased, while adsorption amounts of NaOH, $Na_2CO_3$, and $NaHCO_3$ were decreased. The charcoal prepared at higher temperature showed basic properties, while the charcoals manufactured at lower temperature presented acidic properties. Therefore, it was considered that the carbonization temperature affected the pH of charcoal.

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries (질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용)

  • Yun, Tae-Kwan;Bae, Jae-Young;Park, Sung-Soo;Won, Yong-Sun
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.

Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite (카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성)

  • Lee, Gwang-Hyeon;Go, Hyeong-Sin;Kim, Yun-Seop
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.845-852
    • /
    • 2000
  • Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

  • PDF

Carbon-capture Performance of foam Concrete Using Stainless Steel Slag (스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 탄소포집 성능)

  • Kim, Byung Jun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • The purpose of this study is to investigate the mechanical and carbon-capture properties of foam concrete containing stainless steel argon oxygen decarbonization(AOD) slag. AOD slag was used as a binder, and foam concrete having a foaming ratio of 69 ± 0.5 % and a slurry density of 573.2 to 578.6 kg / ㎥ was produced. In order to examine the effect of carbonation, blended specimen was cured by two types : normal curing and CO2 curing. As a result of the experiment, the specimens incorporating AOD slag showed higher compressive strength than Plain after CO2 curing. According to the analysis of the image of foam concrete, it was confirmed that the ST30 has a lower total pore volume and average pore size than plain, resulting in high compressive strength. The SEM analysis confirmed the formation of calcite by carbonation of AOD slag. Through the thermogravimetric analysis, the increase of CO2 uptake was confirmed by the incorporation of AOD slag. Foam concrete has a higher porosity than normal concrete, so it is expected that carbon-capture performance can be improved by using a AOD slag.

In vivo Bone Regeneration by Using Chitosan Scaffolds with KUSA-A1 Oesteoblast Cells (KUSA-A1 골조세포 함유 키토산 지지체를 이용한 생체내 골재생)

  • Lim, Hyun-Ju;Oh, Eun-Jung;Choi, Jin-Hyun;Chung, Ho-Yun;Ghim, Han-Do
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.401-406
    • /
    • 2012
  • For bone regeneration from KUSA-A1 oesteoblast cells (KUSA), chitosan (CS) scaffolds possessing different surface properties, sponge-type (CSS) and nonwoven-type (CSNW), were manufactured. Surface area and pore size of CSNW were larger than those of CSS. On the other hand, the pore volume of CSNW was smaller than that of CSS. Cell attachment evaluation showed CSNW was more adequate then CSS, and this was attributed to the large surface area. For in vivo investigation, KUSA were seeded into CS scaffolds in wells followed by a week of cell culture. Obtained CS scaffolds with KUSA were implanted on the subcutaneous tissue of BALB/C nude mice. After surgery, implanted scaffolds were harvested and assayed by immunological staining. Network stability of CSS was better than that of CSNW, even if CSS scaffolds were destroyed between 4 and 6 weeks. Calcification was observed after 4 and 8 weeks for CSNW and CSS, respectively.

Effect of $N_2$-back-flushing in Multi Channels Ceramic Microfiltration System for Paper Wastewater Treatment (제지폐수 처리를 위한 다채널 세라믹 정밀여과 시스템에서 질소 역세척 효과)

  • Park Jin-Yong;Choi Sung-Jin;Park Bo-Reum
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • The ceramic microfiltration system with periodic $N_2$-back-flushing was operated for treating paper wastewater discharged from a company making toilet papers by recycling milk or juice cartons. Two kinds of alumina membranes with 7 channels used here for recycling paper wastewater. The optimal filtration time interval for HC04 membrane with $0.4{\mu}m$ pore size was lower value of 4 min than 16 min for HC10 with $1.0{\mu}m$ pore size at fixed back-flushing time 40 sec, trans-membrane pressure $1.0kg_f/cm^2$ and back-flushing pressure $5.0kg_f/cm^2$. From the results of TMP effect at fixed filtration time interval and back-flushing time, the lower TMP was better on membrane fouling because high TMP could make easily membrane cake and fouling inside membrane structure. However, we could acquire the highest volume of total permeate at the highest TMP for the reason that TMP was driving force in our filtration system to treat paper wastewater. Then the permeate water of low turbidity was acquired in our microfiltration system using multi channels ceramic membranes, and the treated water could be reused in paper process.