DOI QR코드

DOI QR Code

Carbon-capture Performance of foam Concrete Using Stainless Steel Slag

스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 탄소포집 성능

  • 김병준 (가천대학교 토목환경공학과) ;
  • 유성원 (가천대학교 토목환경공학과) ;
  • 최영철 (가천대학교 토목환경공학과)
  • Received : 2020.05.19
  • Accepted : 2020.06.29
  • Published : 2020.08.30

Abstract

The purpose of this study is to investigate the mechanical and carbon-capture properties of foam concrete containing stainless steel argon oxygen decarbonization(AOD) slag. AOD slag was used as a binder, and foam concrete having a foaming ratio of 69 ± 0.5 % and a slurry density of 573.2 to 578.6 kg / ㎥ was produced. In order to examine the effect of carbonation, blended specimen was cured by two types : normal curing and CO2 curing. As a result of the experiment, the specimens incorporating AOD slag showed higher compressive strength than Plain after CO2 curing. According to the analysis of the image of foam concrete, it was confirmed that the ST30 has a lower total pore volume and average pore size than plain, resulting in high compressive strength. The SEM analysis confirmed the formation of calcite by carbonation of AOD slag. Through the thermogravimetric analysis, the increase of CO2 uptake was confirmed by the incorporation of AOD slag. Foam concrete has a higher porosity than normal concrete, so it is expected that carbon-capture performance can be improved by using a AOD slag.

본 연구에서는 스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 역학적 및 탄소포집 성능을 조사하였다. AOD 슬래그 바인더로 사용하며 기포율이 69 ± 0.5%이고, 슬러리 밀도는 573.2 ~ 578.6 kg/㎥인 폼 콘크리트를 제작하였다. 탄산화에 의한 영향을 살펴보기 위해 배합을 마친 폼 콘크리트는 일반 양생 및 탄산화 양생 두 가지로 하였다. 압축강도 측정결과 Plain 시편에 비해 AOD 슬래그를 30% 치환한 ST30 시편은 탄산화 양생에 따라 강도가 증가하였다. 폼 콘크리트의 이미지 분석결과에서도 ST30시편이 Plain시편 보다 공극률이 낮으며 평균 공극 크기도 작아 압축강도가 높음을 확인할 수 있었다. 또한 SEM 분석을 통하여 AOD 슬래그의 탄산화에 의한 탄산칼슘의 생성을 확인하였다. TGA분석을 통해 AOD 슬래그의 혼입으로 CO2 uptake의 증가를 확인하였다. 폼 콘크리트는 일반 콘크리트에 비해 공극률이 높으므로 AOD 슬래그를 이용하면 탄산화 속도가 빨라 탄소 포집 성능 향상을 기대할 수 있을 것으로 판단된다.

Keywords

References

  1. Chen, K.-W., Pan S.-Y., Chen, C.-T., Chen, Y.-H., Chiang, P.-C. (2016), High-gravity carbonation of basic oxygen furnace slag for $CO_2$ fixation and utilization in blended cement, Journal of Cleaner Production, 124, 350-360. https://doi.org/10.1016/j.jclepro.2016.02.072
  2. E. Gartner, (2004), Industrially interesting approaches to ''low- $CO_2$" cements, Cem. Concr. Res, 34, 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  3. D.J. Barkera, S.A. Turner, P.A. Napier-Moorea, M. Clarkb and J.E. Davisonc, (2009), $CO_2$ Capture in the Cement Industry, Energy Procedia,02,87-94.
  4. Z. Zhang, D. Huisingh, (2017), Carbon dioxide storage schemes: Technology, assessment and deployment, Journal of Cleaner Production, 142, 1055-1064. https://doi.org/10.1016/j.jclepro.2016.06.199
  5. S. Bachu, (2004), Evaluation of $CO_2$ sequestration capacity in oil and gas reservoirs in the Western Canada Sedimentary Basin, Alberta Geological Survey, Alberta Energy and Utilities Board March, 114. 11-77.
  6. A. Dindi, D.V Quang, Lourdes F. Vega, Enas Nashef, Mohammad R. M. Abu-Zahra, (2019), Applications of fly ash for $CO_2$ capture, utilization, and storage, Journal of $CO_2$ Utilization, 29, 82-102. https://doi.org/10.1016/j.jcou.2018.11.011
  7. S.Y. Chung, J.S. Kim, C. Lehmann, D. Stephan, T.S. Han, M.A. Elrahman, (2020), Investigation of phase composition and microstructure of foamed cement paste with different supplementary cementing materials, cement and concrete composites 109, 103560. https://doi.org/10.1016/j.cemconcomp.2020.103560
  8. Z. Sun, X.C Lin, A. Vollpracht, (2018), Pervious concrete made of alkali activated slag and geopolymers, Construction and Building Materials, 189, 797-803. https://doi.org/10.1016/j.conbuildmat.2018.09.067
  9. J. Young, R. Berger, J. Breese, (1974), Accelerated curing of compacted calcium silicate mortars on exposure to $CO_2$. J. Am. Ceram. Soc, 57, 394-397. https://doi.org/10.1111/j.1151-2916.1974.tb11420.x
  10. L,W. Mo, F. Zhang, (2016), Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under $CO_2$ curing, Min Deng Cement and Concrete Research, 88, 217-226. https://doi.org/10.1016/j.cemconres.2016.05.013
  11. E.J. Moon, Y.C. Choi, (2018), Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation, Journal of Cleaner Production 180,642-654. https://doi.org/10.1016/j.jclepro.2018.01.189
  12. M. Salman, O. Cizer, Y. Pontikes, R.M. Santos, R. Snellings, L. Vandewalle, B. Blanplain, K.V. Balen, (2014), Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a $CO_2$-sequestering construction material, Chemical Engineering Journal, 246, 39-52. https://doi.org/10.1016/j.cej.2014.02.051
  13. L. Hou, J. Li, Z. Lu, Y.H. Niu, J. Jiang, T. Li, (2019), Effect of nanoparticles on foaming agent and the foamed concrete, Construction and Building Materials 227, 116698. https://doi.org/10.1016/j.conbuildmat.2019.116698
  14. O.H. Oren, A. Gholampour, O. Gencel, T. Ozbakkaloglu, (2020), Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate, Construction and Building Material, 238, 117774. https://doi.org/10.1016/j.conbuildmat.2019.117774
  15. Kenzo W, Kosuke Y, Noboru S, Etsuo S, (2012), The mechanism of pore reduction due to carbonation reaction of ${\gamma}$-2CaO.$SiO_2$ and pozolanic admixtures with low-heat-portland-cement Journal of Japan Society of Civil Engineers, 68(1), 83-92.
  16. K. Watanabe, K. Yokozeki, R. Ashizawa, N. Sakata, M. Morioka, E. Sakai, M. Daimo, (2006), High durability cementitious material with mineral admixtures and carbonation curing, Waste Management 26, 752-757. https://doi.org/10.1016/j.wasman.2006.01.030
  17. Saito G, Sakai E, Watanabe K, Morioka M, Otsuki N.,(2008), Carbonation reaction of calcium silicate hydrates containing ${\gamma}$ -2CaO-$SiO_2$ and mechanisms of vaterite formation. J Soc Inorg Mater Japan, 15,284-92.
  18. X. Guan, S. Liu, C. Feng, M. Qiu,(2016), The hardening behavior of ${\gamma}$-$C_2S$ binder using accelerated carbonation, Construction and Building Materials 114, 204-207. https://doi.org/10.1016/j.conbuildmat.2016.03.208
  19. H. Cui, W.C Tang, W. Liu, Z. Dong, F. Xin, (2015), Experimental study on effects of $CO_2$ concentrations on concrete carbonation and diffusion mechanisms, Construction and Building Materials, 93, 522-527. https://doi.org/10.1016/j.conbuildmat.2015.06.007
  20. Kriskova, L., Pontikes, Y., Cizer, zlem, Mertens, G., Veulemans, W., Geysen, D., Jones, P.T., Vandewalle, L., Van Balen, K., Blanpain, B., (2012), Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res, 42, 778-788. https://doi.org/10.1016/j.cemconres.2012.02.016