DOI QR코드

DOI QR Code

불포화폴리에스테르 수지의 형태에 따른 폴리머 모르타르 복합재료의 내열수성

Hot Water Resistance of Polymer Mortar Composites Depending on Unsaturated Polyester Resin Types

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Song, Min-Kyu (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Yong-Yeon (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2017.12.07
  • 심사 : 2018.01.11
  • 발행 : 2018.04.10

초록

올소-타입 불포화폴리에스테르 수지와 이소-타입 불포화폴리에스테르 수지를 합성하여 폴리머 모르타르 복합재료의 폴리머 결합재로 사용하였다. 불포화폴리에스테르 수지의 희석제로는 스티렌 모노머와 아크릴로니트릴을 사용하였고, 경화제로 methyl ethyl ketone peroxide (MEKPO), 가속제로 cobalt octoate (CoOc)를 사용하였다. 수지의 형태와 희석제의 종류에 따라 4종의 불포화폴리에스테르 수지를 제조하여 공시체 제조의 폴리머 결합재로 사용하였다. 폴리머 결합재의 첨가량에 따라 총 16종의 폴리머 모르타르 공시체를 제작하여 내열수성 시험을 행한 후 압축 및 휨강도시험, 세공분석 및 SEM 분석을 실시하였다. 시험결과, 이소-타입 불포화폴리에스테르 수지를 폴리머 결합재로 사용한 공시체가 올소-타입 불포화폴리에스테르 수지를 사용한 공시체보다 더 우수한 강도를 나타내었다. 내열수성시험 후에 측정한 총세공량과 세공의 평균직경은 시험 전에 측정한 값에 비하여 감소되었다. 내열수성시험 전에 관찰한 사진에서 폴리머 결합재와 충전재 및 잔골재가 co-matrix 상으로 견고하게 결합되어 있었으나 내열수성시험 후에 관찰한 사진에서는 폴리머 결합재가 대부분 분해되어 있는 것을 관찰할 수 있었다.

The ortho- and iso- type unsaturated polyester resins were synthesized and used as a polymer binder of the polymer mortar composite. Styrene monomer and acrylonitrile were used as a diluent for the unsaturated polyester resin. Methyl ethyl ketone peroxide (MEKPO) and cobalt octoate (CoOc) were used as a curing agent and an accelerator, respectively. Four kinds of unsaturated polyester resins were prepared according to types of the resin and diluent, and used as a polymer binder in the preparation of the specimen. A total of 16 polymer mortar specimens were prepared according to the added amount of the polymer binder and subjected to a hot water resistance test, followed by compressive and flexural strength tests, and pore and SEM analyses. As a result, it was found that the strength of the specimen using the iso-type unsaturated polyester resin as the polymer binder was better than that of using the ortho-type unsaturated polyester resin. The total pore volume and diameter measured after the hot water resistance test were reduced compared to the values before the test. In the micrographs observed before the hot water resistance test, the polymer binder, filler and fine aggregate were firmly combined to the co-matrix, but the polymer binder was mostly decomposed in the micrographs observed after the test.

키워드

참고문헌

  1. D. W. Fowler, Polymers in concrete: a vision for the 21st century, Cem. Concr. Compos., 21, 449-452 (1999). https://doi.org/10.1016/S0958-9465(99)00032-3
  2. Y. Ohama, Recent research and development trends of concrete-polymer composites in Japan, Proceedings of the 12th Congress on Polymers in Concrete, September 27-28, Chuncheon, Korea (2007).
  3. R. Griffiths and A. Ball, An assessment of the properties and degradation behaviour of glass-fibre-reinforced polyester polymer concrete, Compos. Sci. Technol., 60, 2747-2753 (2000). https://doi.org/10.1016/S0266-3538(00)00147-0
  4. M. Haidar, E. Ghorbel, and H. Toutanji, Optimization of the formulation of micro-polymer concretes, Const. Build. Mater., 25, 1632-1644 (2011). https://doi.org/10.1016/j.conbuildmat.2010.10.010
  5. J. M. L. Reis, Fracture assessment of polymer concrete in chemical degradation solutions, Const. Build. Mater., 24, 1708-1712 (2010). https://doi.org/10.1016/j.conbuildmat.2010.02.020
  6. H. S. Kim, K. Y. Park, and D. G. Lee, A study on the epoxy resin concrete for the ultra-precision machine tool bed, J. Mater. Process. Technol., 48, 649-655 (1995). https://doi.org/10.1016/0924-0136(94)01705-6
  7. S. Orak, Investigation of vibration damping on polymer concrete with polyester resin, Cem. Concr. Res., 30, 171-174 (2000). https://doi.org/10.1016/S0008-8846(99)00225-2
  8. S. W. Son and J. H. Yeon, Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive, Const. Build. Mater., 37, 669-679 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.093
  9. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Strength degradation of polymer concrete in acidic environments, Cem. Concr. Compos., 29, 637-645 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.001
  10. J. T. San-Jose, I. J. Vegas, and M. Frias, Mechanical expectations of a high performance concrete based on a polymer binder and reinforced with non-metallic rebars, Const. Build. Mater., 22, 2031-2041 (2008). https://doi.org/10.1016/j.conbuildmat.2007.08.001
  11. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: Different costs, similar mechanical properties and durability, Const. Build. Mater., 21, 546-555 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.003
  12. S. H. Lee, T. W. Park, and J. O. Lee, A study on the preparation of UPE resins with different glycol molar ratios and their physical properties: 1. Effect of glycol molar ratios on polymerization of liquid resins and their physical properties, Polymer(Korea), 23, 493-501 (1999).
  13. S. H. Lee, T. W. Park, and J. O. Lee, A study on the preparation of UPE resins with different glycol molar ratios and their physical properties: 2. Characteristics of liquid and cured UPE resins, Polymer(Korea), 23, 773-780 (1999).
  14. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete, Cem. Concr. Res., 34, 2091-2095 (2004). https://doi.org/10.1016/j.cemconres.2004.03.012
  15. E. H. Hwang, J. M. Kim, and J. H. Yeon, Characteristics of polyester polymer concrete using spherical aggregates from industrial by-products, J. Appl. Polym. Sci., 129, 2905-2912 (2013). https://doi.org/10.1002/app.39025
  16. S. H. Lee and J. O. Lee, Curing behaviors and mechanical properties of unsaturated polyester resins with different glycol molar ratios, Polymer(Korea), 24, 599-609 (2000).
  17. E. H. Hwang and J. M. Kim, Characteristics of concrete polymer composite using atomizing reduction steel slag (I) (Use of PMMA as a shrinkage reducing agent), Appl. Chem. Eng., 25, 181-187 (2014). https://doi.org/10.14478/ace.2014.1003
  18. E. H. Hwang and J. M. Kim, Characteristics of concrete polymer composite using atomizing reduction steel slag as an aggregate (II) (Use of polystyrene as a shrinkage reducing agent), Appl. Chem. Eng., 25, 380-385 (2014). https://doi.org/10.14478/ace.2014.1044
  19. B. W. Jo, S. K. Park, and D. K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Const. Build. Mater., 22, 14-20 (2008). https://doi.org/10.1016/j.conbuildmat.2007.02.009