청정소재제품기술

질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용

윤태관, 배재영*, 박성수[†], 원용선[†]*

계명대학교 자연과학대학 화학과 704-701 대구광역시 달서구 달구벌대로 2800 [†]삼성SDI 주식회사 중앙연구소 446-577 경기도 용인시 기흥구 공세동 428-5 [‡]부경대학교 화학공학과 608-739 부산광역시 남구 용당동 산 100

(2012년 5월 1일 접수; 2012년 5월 31일 수정본 접수; 2012년 5월 31일 채택)

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO₂ Nanoparticles as Anode Materials for Lithium-ion Batteries

Tae Kwan Yun, Jae Young Bae*, Sung Soo Park † , and Yong Sun Won $^{\dagger}*$

Department of Chemistry, Keimyung University 2800, Dalgubeol-daero, Dalseo-gu, Daegu 704-701, Republic of Korea. [†]Corporate R&D Center, Samsung SDI Co., Ltd. 428-5, Gongse-dong, Giheung-gu, Gyunggi-do 446-577, Republic of Korea [‡]Department of Chemical Engineering, Pukyong National University San 100, Yongdang-dong, Nam-gu, Busan 608-739, Republic of Korea

(Received for review May 1, 2012; Revision received May 31, 2012; Accepted May 31, 2012)

요 약

Tri-block copolymer를 유연 템플레이트로 사용한 수열합성법에 의해 메조다공성 아나타제상 TiO₂ 나노입자를 합성하였다. 합성된 TiO₂ 재료는 230 m²/g의 매우 큰 표면적을 가졌으며 6.8 nm의 기공크기와 0.404 mL/g의 기공부피를 보였다. 리튬이 온전지 음극재로서의 가능성을 확인하기 위해 코인셀 테스트를 실시하였는데 0.1 C에서 240 mAh/g의 방전 용량을 얻었으 며 이는 LTO (Li₄Ti₅O₁₂)의 이론 방전 용량인 175 mAh/g 보다 훨씬 큰 값이었다. 비록 C-rate가 증가함에 따라 용량이 감소하 는 모습을 보였으나 메조다공성 TiO₂ 재료는 리튬 이온이 침투할 수 있는 큰 표면적을 제공할 수 있다는 면에서 여전히 리튬 이온전지의 음극재로서 가능성이 있다. 추가적으로 질소를 도핑하여 TiO₂ framework 내의 전자 이동을 향상시킴으로써 C-rate 증가에 따른 용량 감소를 일부 제어할 수 있음을 확인하였다.

주제어: 수열합성법, 메조다공성 산화티타늄, 리튬이온전지, 음극재

Abstract : Mesoporous anatase TiO_2 nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting TiO_2 materials have a high specific surface area of 230 m²/g, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase TiO_2 for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO (Li₄Ti₅O₁₂). Although the discharge capacity decreases with the C-rate increase, the mesoporous TiO_2 is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in TiO_2 framework.

Keywords : Hydrothermal method, Mesoporous TiO₂, Lithium ion battery, Anode material

* To whom correspondence should be addressed. E-mail: yswon@pknu.ac.kr

doi:10.7464/ksct.2012.18.2.177

1. 서 론

최근에 광학적 특성이 우수한 TiO2 나노입자는 광촉매[1],

염료감응형 태양전지[2] 등의 다양한 분야에서 많은 연구가 진행되고 있다. 한편 지구온난화가 이슈화됨에 따라 하이브리 드 전기자동차(Hybrid Electric Vehicle, HEV) 대한 관심이 어 느 때보다도 집중되고 있고 따라서 자동차의 엔진을 대체하는 리튬이온전지(Lithium Ion Battery, LIB)팩에 대한 연구가 활 발하게 진행되고 있다[3,4]. 이에 무엇보다도 안전성(safety)의 확보라는 측면에서 기존 흑연(graphite) 음극을 대체할 수 있는 물질의 개발이 요구되고 있다. Table 1은 PHEV (Plug-in HEV) 에 적용될 수 있는 전지 시스템을 정리하였다[5]. 표에서도 알 수 있듯이 MS-TiO₂ 시스템은 비록 용량이 떨어지는 단점이 있으나 흑연 음극의 고질적인 망간(Mn) 용출에 의한 안전성 이슈를 해결할 수 있어 현재 Figure 1과 같이 EnerDel/Argonne Advanced High-Power Lithium-Ion Battery (MS-TiO₂ system) 가 토요타 Prius에 적용되는 등 개발 단계에 있다.

음극으로 사용되는 LTO는 spinel 층상 구조(Li₄Ti₅O₁₂)로서 rock salt 구조(Li₇Ti₅O₁₂)로 상전이가 일어나며 리튬 이온이 층 전되는데 이론 용량이 1.5 V에서 175 mAh/g으로 Table 1에서 보듯이 흑연에 비해 약 절반 정도에 해당한다. 따라서 안정한 TiO₂ 구조를 유지하면서 용량을 증가시키려는 연구가 진행되 고 있다[6,7]. TiO₂ 다형체(아나타제, 루타일, TiO₂(B))의 경우 이론 용량이 335 mAh/g으로 흑연의 용량보다도 큰 값을 가지 지만 조밀한 구조 내로 리튬 이온이 침투하는데 속도론적 제 약이 존재한다[8]. 이에 메조다공성 아나타제(anatase) 및 루타

 Table 1. Selected lithium-ion battery systems for PHEV[5]

일(rutile) 나노입자를 합성하여 리튬 이온의 침투가 가능한 표 면적을 증가시켜 용량을 향상시킬 수 있음이 보고되어 있다 [6,7]. 또한 도핑을 통하여 TiO₂ 구조 내의 전자 이동을 향상시 켜 C-rate 특성을 향상시킬 수 있다[9].

본 연구에서는 tri-block copolymer를 템플레이트로 한 수열 합성법[2]를 이용하여 표면적인 큰 메조다공성 아나타제상 TiO₂ 나노입자를 합성하고 이를 리튬이온전지의 음극재로 적용, 코 인셀 테스트를 통해 기존 LTO (Li₄Ti₅O₁₂)와 비교하여 용량이 어떻게 달라지는지를 살펴보고자 한다. 여기에 기존의 메조다 공성 아나타제상을 그대로 유지하며 질소가 도핑된 TiO₂ 나노 입자를 추가로 합성하고 도핑으로 인해 향상된 TiO₂ 구조 내 의 전자 이동이 C-rate 특성에 미치는 영향도 고려하고자 한다.

2. 실 험

2.1. 질소가 도핑된 메조다공성 산화티타늄 나노입자의 합성

실험에 사용된 모든 시약들은 별도의 정제과정 없이 구입된 상태로 사용되었으며 질소가 도핑된 메조다공성 산화티타늄 (TiO₂) 나노입자의 합성방법은 다음과 같다. 사염화티타늄(TiCl₄) 을 ice-water bath에서 증류수에 0.2 mol/L의 농도로 용해시킨 다. 위 수용액을 90 ℃ 항온조에서 질소도핑을 위해 암모니아 수를 연속적으로 교반하면서 혼합한다. 이때, 티타늄과 질소

System	NCA-Graphite	LFP-Graphite	MS-TiO ₂	MNS-TiO ₂	MN-Graphite
Electrodes Positive Negative	LiNi _{0.8} Co _{0.15} Al _{0.05} Graphite	LiFePO ₄ Graphite	LiMn ₂ O ₄ Li ₄ Ti ₅ O ₁₂	LiMn _{1.5} Ni _{0.5} O ₄ Li ₄ Ti ₅ O ₁₂	Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ Graphite
Capacity, (mAh/g) Positive Negative	155 290	162 290	100 170	130 170	275 290
Safety	Fair	Good	Excellent	Excellent	Excellent
Life Potential	Good	Good	Excellent	Unknown	Unknown
Cost	Moderate	Moderate	Low	Moderate	Moderate
Status	Pilot Scale	Pilot Scale	Develop.	Research	Research

Figure 1. EnerDel/Argonne Advanced High-Power Lithium-Ion Battery (MS-TiO₂ system).

의 몰비는 Ti:N = 1:9가 되도록 한다. 이렇게 하여 만들어진 혼합물을 상온까지 냉각시키고 P-123 [poly-(ethylene oxide) poly-(propylene oxide) poly-(ethylene oxide) EO₂₀-PO₇₀-EO₂₀] 를 교반하면서 천천히 첨가한다. 추가적으로 두 시간 정도 교반 후 tetramethylammonium hydroxide (TMAOH)을 첨가하여 pH 값이 약 4.0이 되도록 조절한다. TiCl₄와 P-123, 물의 몰비는 TiCl₄: P-123: H₂O = 1:0.036:370옆으며 마지막으로 50 ℃에 서 48시간 동안 반응을 유지한다. 침전물을 원심분리기에서 두 번 증류수로 세척하고 여과한 후 80 ℃에서 overnight 건조 하여 파우더를 회수한다. 회수된 파우더는 400 ℃에서 6시간 공기를 흘려주며 소성하면 아나타제 상을 형성하는데 이렇게 하여 얻어진 질소가 도핑된 메조다공성 산화티타늄 시료를 NMP-TiO₂ (N-doped mesoporous TiO₂)로 표기하기로 한다. 대조군으로 질소가 도핑되지 않은 순수한 메조다공성 산화티 타늄 나노입자는 MP-TiO2로 표기하며 합성방법은 암모니아 수를 첨가하는 부분을 제외하고는 동일하다.

2.2. 질소가 도핑된 메조다공성 산화티타늄 시료의 분석

제조된 메조다공성 TiO2 나노입자의 결정구조 분석을 위해 X-ray 회절분석기(X-ray diffraction, PANalytical X'pert PRO MRD diffractometer with graphite monochromatized Cu-K α_1 radiation ($\lambda = 15.406$ nm) operated at a tube current of 25 mA and a voltage of 40 kV)를 이용하였다. 데이터는 20°에서 80° 의 2 θ 범위에서 1.1×10³ %의 스캔속도로 수집되었다. 시료의 기공구조 분석은 Quantachrome QUADRASORB SI 흡착 장비 를 이용하여 얻어진 질소의 흡탈착 등온선(at 77 K)을 이용하 였다. 분석에 앞서 시료는 200 ℃에서 2시간 동안 진공 탈가 스(degassing)를 하였으며 비표면적과 평균 기공크기를 각각 BET (Brunauer-Emmett-Teller)와 BJH (Barrett-Joyner-Halenda) 방법에 의해서 결정하였다. 질소 도핑을 확인하기 위하여 X-ray 광전자 분광법(X-ray photoelectron spectroscopy, Thermo Fisher Scientific Multilab-2000 equipped with Mg Ka excitation)을 사 용하였으며 탄소의 1s 피크(284.6 eV)를 기준으로 결합에너지 를 산정하였다. 이 밖에 메조다공성 TiO2 나노입자의 광학 특 성을 확인하기 위해 UV-vis 분광법(UV-vis diffuse reflectance spectroscopy, Varian Cary 100 UV-vis-NIR spectrophotometer equipped with an integrating sphere assembly and using BaSO₄ as reference)을 이용하였다.

3. 결 과

3.1. X-ray 회절

제조된 시료의 결정상과 결정립 크기를 분석하기 위해 파우 더 XRD를 이용하였다. Figure 2는 MP-TiO₂와 NMP-TiO₂ 시 료의 XRD 패턴을 보여주고 있다. 모든 시료는 TiO₂의 아나타 제 상에 일치하는 패턴을 가지고 있으며 루타일 상이나 브루 카이트(brookite) 상, 혹은 불순물로 볼 수 있는 어떠한 피크도 보이지 않음을 알 수 있다. 또한 질소 도핑 이후에도 동일하게 순수한 아나타제 상이 얻어졌다.

Figure 2. XRD patterns of MP-TiO₂ and NMP-TiO₂.

Table 2. Measured physical properties of MP-TiO₂ and NMP-TiO₂

Samples	Crystallite size (nm)	$S_{BET} \over (m^2/g)$	Pore size (nm)	Pore volume (cm ³ /g)
MP-TiO ₂	8.5	230	6.8	0.404
NMP-TiO ₂	6.5	212	5.1	0.324

시료의 평균 결정립 크기는 아나타제(101) 회절 피크에 대하 여 아래의 Debye-Scherrer 식 (1)을 적용하여 계산하였다.

$$L = K\lambda/\beta \cos\theta \tag{1}$$

L은 nm 단위의 결정립의 크기이며 K는 0.89로 동일하게 적용하였고 λ는 X-ray의 Cu Kα-radiation 파장인 0.15406 nm 였다. β는 기기의 broadening을 뺀 보정된 band broadening이 고 θ는 회절각이다. 결정립 값들은 다른 물리적 특성들과 함 께 Table 2에 정리하였다.

3.2. BET와 BJH 분석

합성된 TiO₂ 시료의 질소 흡탈착 등온선과 BJH 기공 크기 분포 결과가 Figure 3에 나와 있다. 보여지는 바와 같이 H2 hysteresis loop를 가지는 타입 IV의 등온선은 메조다공성 구 조의 특징으로 탈착 branch가 상대압력 *P*/*P*₀ = 0.4에서 나타나 는 것을 보아 상대적으로 균일한 channel-like 기공들로 이루어 진 메조다공성 구조임을 알 수 있다[11]. 시료의 BET 표면적과 기공 크기, 기공 부피를 Table 2에 정리하였다.

3.3. XPS spectra

TiO₂ 구조 내에 도핑된 질소 원소를 확인하기 위해 XPS 분 석을 진행하였다. Figure 4(a)은 MP-TiO₂와 NMP-TiO₂ 시료의 N 1s XPS 피크가 존재할 수 있는 구간을 보여주고 있는데 NMP-TiO₂의 경우에만 399.5 eV에서 피크가 존재함을 알 수 있다. 이 피크는 질소가 도핑된 TiO₂ 시료에 대해 396-404 eV

Figure 3. N₂ adsorption-desorption isotherms of (a) MP-TiO₂ and (b) NMP-TiO₂. BJH pore size distribution plot is shown in the inset.

Figure 4. XPS spectra of (a) the N 1s region and (b) the Ti 2p region of MP-TiO₂ and NMP-TiO₂.

범위에서 전형적으로 나타나는 피크들과 상응된다[12-15]. 비 록 질소가 도핑된 TiO₂의 질소의 정확한 XPS 피크 위치에 대해서 논란이 계속되고 있지만 일반적으로 396-397 eV 범위 에서 나타나는 피크는 TiO₂의 격자 구조 내에 산소가 질소로 치환된 것을 의미한다[12]. 하지만 Figure 4(a)에는 396-397 eV 범위에 N 1s 피크가 존재하지 않으며[14,16] 대신에 399.5 eV에서 피크가 관찰되는데 이는 Ti-O-N linkage에 기인하는 것으로 판단된다[12,13]. TiO₂ 내에 도핑된 질소는 산소보다 전기음성도가 작으며 따라서 전자 밀도가 감소하게 된다. 따 라서 399.5 eV의 N 1s 피크는 TiO₂ 격자 구조 내에 산소가 질 소로 치환되어 Ti-O-N linkage에 의해 이동(shift)된 것으로 설명 하는 것이 합리적이다. 이는 Ti 2p XPS 피크 구간(Figure 4(b)) 에 대한 관찰로 추가 설명이 가능한데 Ti 2p₃₂ core level 피크 가 MP-TiO₂와 NMP-TiO₂에 대해 각각 458.1 eV와 458.0 eV에 나타나고 있다. 질소가 도핑되면 Ti 2p의 결합에너지는 다소 감소할 것이며 Ti와 주변 음이온(anion)들과의 전기적인 상호 작용이 변하게 될 것이다. 질소가 산소보다 전기음성도가 작기 때문에 질소에서 Ti 쪽으로 전자가 이동하게 되어 Ti 주변의 전자 밀도는 증가한다[17]. 위와 같은 XPS 분석 결과는 질소가 TiO₂ 격자 구조 내에 성공적으로 도핑된 것을 보여준다고 할 수 있다.

3.4. UV-vis diffuse reflectance spectra

UV-visible 흡광법은 가시광선에 반응하는 TiO₂ 재료의 광학 성질을 연구하는 데 가장 일반적으로 채택되는 방법이다. 대부 분의 연구가 질소가 도핑된 TiO₂는 400-600 nm 범위에서 흡수 능이 향상됨을 보여주었다[18]. Figure 5는 MP-TiO₂와 NMP-TiO₂ 시료의 UV-vis diffuse reflectance spectra를 보여주는데

Figure 5. UV-vis diffuse reflectance spectra of MP-TiO₂ and NMP-TiO₂.

NMP-TiO₂의 흡수단이 MP-TiO₂와 비교하여 낮은 에너지 쪽으 로 이동됨을 알 수 있다. 또한 질소 도핑 후에 400~530 nm 범 위의 흡수가 매우 크게 강해짐을 보여주고 있다. XPS 결과와 마찬가지로 TiO₂에 질소가 성공적으로 도핑되었음을 확인해 주 고 있다. 시료의 밴드갭 에너지(band gap energy)는 아래의 식으 로부터 결정될 수 있는데[19],

$$E_g = 1239.8/\lambda_g \tag{2}$$

여기서 E_g는 밴드갭 에너지(eV), λ_g는 스펙트럼의 흡수단의 파장(nm)을 의미한다. MP-TiO₂와 NMP-TiO₂ 시료의 밴드갭 흡 수시작점(absorption onset)은 각각 398 nm와 420 nm이며 이는 밴드갭 에너지 3.12 eV와 2.95 eV에 해당한다.

3.5. 메조다공성 TiO2의 리튬이온전지 음극 적용

코인 셀 테스트를 위해 합성된 메조다공성 TiO₂를 이용하 여 다음과 같이 활전극(working electrode)을 형성하였다. 유 기용제인 N-Methyl-2-pyrrolidone (NMP)에 바인더 물질인 poly (vinylidene fluoride) (PVDF)을 약 2시간 정도 선분산하여 용 해한다. 여기에 도전재인 super P carbon black을 투입하여 Thinky mixer(공전/자전 믹서)로 3~5분 잘 혼합하고 다시 대조군인 LTO (Li₄Ti₅O₁₂) 및 합성된 MP-TiO₂, NMP-TiO₂ 분말을 투입 하여 5분정도 Thinky mixer로 혼합 및 분산을 거쳐 슬러리를 만들고 알루미늄 극판 위에 닥터블레이딩(doctor-blading)으로

Table 3. Capacity vs. C-rate of of MP-TiO₂ and NMP-TiO₂

Figure 6. Capacity vs. C-rate of of MP-TiO₂ and NMP-TiO₂.

코팅하여 활전극을 완성한다.

C-rate(예로 C/5는 one lithium per formula unit in 5 hours임) 별로 초기 용량을 구하여 Table 3에 정리하였으며 Figure 6은 이를 보기 편하게 그래프로 보여주고 있다. 먼저 대조군인 LTO (Li4Ti5O12)의 경우 C-rate에 영향을 크게 받지 않고 이론 적 방전 용량인 175 mAh/g의 95% 수준에서 용량이 얻어졌다. 반면 메조다공성 TiO2의 경우 0.1 C에서 MP-TiO2가 240 mAh/g, NMP-TiO₂가 228 mAh/g로 LTO의 이론적 방전 용량인 175 mAh/g 보다 훨씬 높은 방전 용량을 얻었다. 이는 서론에서도 언급했듯이 메조다공성 구조는 표면적이 일반 TiO2 분말에 비 해 매우 크고 비록 층상구조를 가지는 LTO 보다 리튬 이온의 아나타제상 TiO2로의 침투가 느리지만 침투 표면적의 증가가 이를 넘어서서 최종 용량의 증가를 가져오는 것으로 판단된다. 다만 C-rate가 증가할수록 이러한 효과가 많이 감소하는데 이는 메조기공 내 리튬 이온의 확산에 더 많은 저항이 걸리기 때문 이다. 반면 질소 도핑이 TiO2 구조 내의 전자 이동을 향상시켜 C-rate 증가에 따른 용량의 감소를 일부 제어해 줄 수 있음을 확인하였다.

이 코인셀 테스트는 활전극의 제작 과정의 최적화가 이루 어지지 않은 초기 결과이며 기공의 크기와 부피를 제어하여 메조다공성 TiO₂의 음극으로서의 용량을 향상시키고 C-rate 에 따른 용량의 감소 문제를 해결하려는 노력과 최종 사이클 (cycle) 테스트까지 지속적인 연구가 필요하다.

C-rate	LTO_ref (Charge)	LTO_ref (Discharge)	MP-TiO ₂ (C)	$MP-TiO_2(D)$	NMP-TiO ₂ (C)	NMP-TiO ₂ (D)
0.1	175 mAh/g	169	357	240	337	228
0.2	170	168	252	221	253	221
0.5	169	166	233	206	234	210
1	169	165	221	193	226	202
2	168	163	212	175	219	190

4. 결 론

Tri-block copolymer를 유연 템플레이트로 사용한 수열합성 법를 이용하여 메조다공성 아나타제상 TiO₂ 나노입자를 합성 하였으며 여기에 아나타제상을 유지하며 질소를 성공적으로 도핑하였다. 메조다공성 구조는 리튬 이온이 침투할 수 있는 큰 표면적을 제공할 수 있는데 비록 코인셀 초기 테스트 결과 이지만 0.1 C에서 기존 LTO (Li₄Ti₅O₁₂)의 이론적 방전 용량 인 175 mAh/g 보다 훨씬 높은 240 mAh/g의 용량을 얻었다. 다 만 C-rate가 증가할수록 기공 내 리튬 이온의 확산에 대한 저 항이 커지기 때문에 용량이 C-rate 증가에 따라 감소하는 모습 을 보였다. 질소 도핑이 이러한 용량의 감소를 일부 제어할 수 있음을 또한 확인하였다.

감사

본 연구는 2012년도 정부(교육과학기술부)의 재원으로 한국 연구재단의 지원을 받아 수행된 기초연구사업(No. 2012R1A1-A4A01019566)이며 또한 (재)부산테크노파크 산학공동기술혁 신사업의 일환으로 수행되었습니다. 이에 감사드립니다.

참고문헌

- Kwak, B. S., Choi, H. -C., Woo, J. -W., Lee, J. -S., An, J. -B., Ryu, S. G., and Kang, M., "Photo-electrochemical Hydrogen Production over P- and B- Incorporated TiO₂ Nanometer Sized Photo-catalysts," *Clean Technol.*, **17**, 78-82 (2011).
- Yun, T. K., Park, S. S., Kim, D., Hwang, Y. -K., Huh, S., Bae, J. Y., and Won, Y. S., "Pore-size Effect on Photovoltaic Performance of Dye-sensitized Solar Cells Composed of Mesoporous Anatase-titania," *J. Power Sources*, **196**, 3678-3682 (2011).
- "Energy Storage Research and Development," Annual Progress Report, Department of Energy (USA) (2009).
- Bang, J. M., Cho, Y. I., and Na, B. -K., "Manufacture of Titaniasilica Composite Anode Materials by Sol-gel Method," *Clean Technol.*, 16, 140-144 (2010).
- Nelson, P., "Advanced Lithium-ion Batteries for Plug-in Hybrid-electric Vehicles," Technical Report, Argonne National Laboratory (USA).
- Reddy, M. A., Kishore, M. S., Pralong, V., Caignaert, V., Varadaraju, U. V., and Raveau, B., "Room Temperature Synthesis and Li Insertion into Nanocrystalline Rutile TiO₂," *Electrochem. Commun.*, **8**, 1299-1303 (2006).

- Guo, Y. -G., Hu, Y. -S., and Maier, J., "Synthesis of Hierarchically Mesoporous Anatase Spheres and their Application in Lithium Batteries," *Chem. Commun.*, 2783-2785 (2006).
- Wang, D., Choi, D., Yang, Z., Viswanathan, V. V., Nie, Z., Wang, C., Song, Y., Zhang, J. -G., and Liu, J., "Synthesis and Li-ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO₂," *Chem. Mater.*, **20**, 3435-3442 (2008).
- Lai, C., Yuan, X. C., Cao, X. L., Qiao, Q. Q., Wang, Y. L., and Ye, S. H., "Enhanced High-Rate Capability of the C-N-Doped TiO₂ as Anode Material for Lithium-Ion Battery," *Electrochem. Solid-State Lett.*, **15**, A65-A67 (2012).
- Yan, M. C., Chen, F., Zhang, J. L., and Anpo, M., "Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties," *J. Phys. Chem. B*, **109**, 8673-8678 (2005).
- Kruk, M., and Jaroniec, M., "Gas Adsorption Characterization of Ordered Organic-inorganic Nanocomposite Materials," *Chem. Mater.*, 13, 3169-3183 (2001).
- Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., "Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides," *Sci.*, **293**, 269-271 (2001).
- Sathish, M., Viswanathan, B., Viswanath, R. P., and Gopinath, C. S., "Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-doped TiO₂ Nanocatalyst," *Chem. Mater.*, **17**, 6349-6353 (2005).
- Sakthivel, S., Janczarek, M., and Kisch, H., "Visible Light Activity and Photoelectrochemical Properties of Nitrogen Doped TiO₂," *J. Phys. Chem. B*, **108**, 19384-19387 (2004).
- Irie, H., Watanabe, Y., and Hashimoto, K., "Nitrogen-concentration Dependence on Photocatalytic Activity of TiO₂xNx Powders," *J. Phys. Chem. B*, **107**, 5483-5486 (2003).
- Aoki, K., Morikawa, T., Ohwaki, T., and Taga, Y., "Photocatalytic Degradation of Formaldehyde and Toluene Mixtures in air with a Nitrogen-doped TiO₂ Photocatalyst," *Chem. Lett.*, 35, 616-617 (2006).
- Chen, X., and Burda, C., "Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles," *J. Phys. Chem. B*, 108, 15446-15449 (2004).
- Tokudome, H., and Miyauchi, M., "NX Doped TiO₂ Nanotube with Visible Light Activity," *Chem. Lett.*, 33, 1108-1109 (2004).
- Senthilnathan, J., and Philip, L., "Photocatalytic Degradation of Lindane under UV and Visible Light Using N-doped TiO₂," *Chem. Eng. J.*, **161**, 83-92 (2010).