• Title/Summary/Keyword: Polyvinylidene Fluoride

Search Result 242, Processing Time 0.033 seconds

Stability and Antibacterial Activity of Bacteriocins Produced by Bacillus thuringiensis and Bacillus thuringiensis ssp. kurstaki

  • Jung, Woo-Jin;Mabood, Fazli;Souleimanov, Alfred;Zhou, Xiaomin;Jaoua, Samir;Kamoun, Fakher;Smith, Donald L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1836-1840
    • /
    • 2008
  • Bacteriocins are antimicrobial peptides that are produced by bacteria and toxic to bacterial strains closely related to the producer strain. It has previously been reported that Bacillus thuringiensis strain NEB17 and Bacillus thuringiensis subsp. kurstaki BUPM4 produce the bacteriocins thuricin 17 (3,162 Da) and bacthuricin F4 (3,160.05 Da), respectively. Here, we demonstrate that these bacteriocins have functional similarities and show a similar spectrum of antimicrobial activities against indicator strains. We also studied the effects of sterilization methods on the recovery and biological activities of these bacteriocins. They were completely degraded by autoclaving and the two were similarly affected by the tested filter membranes. Polyvinylidene fluoride (PVDF), polyestersulfone (PES), and cellulose acetate (CA) are suitable for filter sterilization of these bacteriocins. The two bacteriocins were stable across a range of storage conditions. These data will facilitate their utilization in food preservation or agricultural applications.

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP)

  • Park, Jeong-Ho;Yeo, Sang-Yeob;Park, Jung-Ki;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.110-115
    • /
    • 2010
  • The plasticized polymer electrolytes based on polyvinylidene fluoride-co-hexafluoropropylene (P(VdF-co-HFP)), tetra (ethylene glycol) dimethyl ether (TEGDME), and lithium perchlorate ($LiClO_4$) are prepared for the lithium sulfur batteries by solution casting with a doctor-blade. The polymer electrolyte with EO : Li ratio of 16 : 1 shows the maximum ionic conductivity, $6.5\;{\times}\;10^{-4}\;S/cm$ at room temperature. To understand the effect of the salt concentration on the electrochemical performance, the polymer electrolytes are characterized using electrochemical impedance spectroscopy (EIS), infrared spectroscopy (IR), viscometer, and differential scanning calorimeter (DSC). The optimum concentration and mobility of the charge carriers could lead to enhance the utilization of sulfur active materials and the cyclability of the Li/S unit cell.

Development of the ultra/nano filtration system for textile industry wastewater treatment

  • Rashidi, Hamidreza;Sulaiman, Nik Meriam Nik;Hashim, Nur Awanis;Bradford, Lori;Asgharnejad, Hashem;Larijani, Maryam Madani
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.333-344
    • /
    • 2020
  • Advances in industrial development and waste management over several decades have reduced many of the impacts that previously affected ecosystems, however, there are still processes which discharge hazardous materials into environments. Among industries that produce industrial wastewaters, textile manufacturing processes play a noticeable role. This study was conducted to test a novel continuous combined commercial membrane treatment using polyvinylidene fluoride (PVDF), ultrafiltration (UF), and polyamide (PA) nanofiltration (NF) membranes for textile wastewater treatment. The synthetic textile wastewater used in this study contained sodium silicate, wax, and five various reactive dyes. The results indicate that the removal efficiency for physical particles (wax and resin) was 95% through the UF membrane under optimum conditions. Applying UF and NF hybrid treatment resulted in total effective removal of dye from all synthetic samples. The efficiency of sodium silicate removal was measured to be between 2.5 to 4.5% and 13 to 16% for UF and NF, respectively. The chemical oxygen demand in all samples was reduced by more than 85% after treatment by NF.

Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II (촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II)

  • Choi Byung-June;Lee Sang-Hun;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Mechanical and Electrical properties of MWCNT-added SPB/PVDF composite electrode (MWCNT가 첨가된 SPB/PVDF Composite Electrode의 물리적 및 전기적 특성)

  • Chung, Young-Dong;Kim, Dong-Hun;Shin, Hye-Min;Ha, Kyung-Hwa;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.512-513
    • /
    • 2007
  • Carbon/polymer based composite electrodes were fabricated by using Super p. Black(SPB) as a conductor and polyvinylidene fluoride (PVDF) as a binder. This type of composite electrode are considered as excellent candidates for heating film and variable resistor applications. Aim of this work is the study of the Mechanical and Electrical properties on composite electrode by the contents of SPB and MWCNT, respectively. The composite electrode having 10~15 wt% of SPB show good electrical and mechanical properties. Mechanical and electrical properties are increased by the addition of MWCNT into the composite electrode.

  • PDF

Thickness Effects on Electrical Properties of PVDF-TrFE (51/49) Copolymer for Ferroelectric Thin Film Transistor

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.130-131
    • /
    • 2007
  • In this study, polyvinylidene fluoride/trifluoroethylene (PVDF-TrFE) was investigated. For a metal-ferroelectic-metal (MFM) structure, We obtained that the 70 nm-thick film showed the maximum polarization of $8.24\;{\mu}C/cm^2$, 2Pr of $6\;{\mu}C/cm^2$ and the coercive voltage of ${\pm}3.1\;V$ at 12 V. The 140 nm-thick film showed higher performance. However, the thicker film required a higher voltage. The current density was $10^{-6}{\sim}10^{-7}\;A/cm^2$ under 15 V. We can expect from these results that the electrical properties of the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer, be able to be on the trade-off relationship between the remanent polarization and the leakage current.

  • PDF

Response between Collocated Sensor and Actuator Bonded on a Smart Panel (지능판에 동위치화된 압전 센서-액추에이터의 응답특성 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.264-273
    • /
    • 2007
  • A smart panel with structural sensors and actuators for minimizing noise radiation or transmission is described in the paper with the concept of active structural acoustical control. The sensors and actuators are both quadratically shaped piezoelectric polyvinylidene fluoride(PVDF) Polymer films to implement a volume velocity sensor and uniform force actuator respectively. They are collocated on either side of the panel to take advantage of direct velocity feedback(DVFB) strategy, which can guarantee a robust stability and high performance as long as the sensor-actuator response is strictly positive real(SPR). However, the measured sensor-actuator response of the panel showed unexpected result with non-SPR property. In the paper, the reason of the non-SPR property is investigated by theoretical analysis, computer simulation and experimental verification. The investigation reveals that the arrangement of collocated piezoelectric PVDF sensor and actuator pair on a panel is not relevant to get a high feedback gain and good performance with DVFB strategy.

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.