DOI QR코드

DOI QR Code

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol (Department of Applied Chemistry, Hanbat National University) ;
  • Son, Bongki (Department of Applied Chemistry, Hanbat National University) ;
  • Ryou, Myung-Hyun (Institute of Physical Chemistry, MEET Battery Research Centre, University of Muenster) ;
  • Kim, Sang Hern (Department of Applied Chemistry, Hanbat National University) ;
  • Ko, Jang Myoun (Department of Applied Chemistry, Hanbat National University) ;
  • Lee, Yong Min (Department of Applied Chemistry, Hanbat National University)
  • Received : 2013.03.10
  • Accepted : 2013.03.25
  • Published : 2013.03.30

Abstract

The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Keywords

References

  1. M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, Adv. Energy Mater., 2, 645, (2012). https://doi.org/10.1002/aenm.201100687
  2. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, Nano lett., 9, 1045, (2009). https://doi.org/10.1021/nl803394v
  3. J. M. Tarascon and M. Armand, Nature, 414, 359, (2001). https://doi.org/10.1038/35104644
  4. S. H. Kang and M. M. Tackeray, Electrochemistry Communications, 11, 748 (2009). https://doi.org/10.1016/j.elecom.2009.01.025
  5. K. J. Hong and Y. K. Sun, Journal of Power Sources, 109, 427 (2002). https://doi.org/10.1016/S0378-7753(02)00101-5
  6. Y. M. Lee, J. Y. Lee, H. T. Shim, J. K. Lee, and J. K. Park, J. Electrochem. Soc., 154, A515, (2007). https://doi.org/10.1149/1.2719644
  7. L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Nano Lett., 9, 3370, (2009). https://doi.org/10.1021/nl901670t
  8. J. Shim and K. A. Striebel, Journal of Power Sources, 119-121, 934, (2003). https://doi.org/10.1016/S0378-7753(03)00235-0
  9. J. Shim and K. A. Striebel, Journal of Power Sources, 130, 247, (2004). https://doi.org/10.1016/j.jpowsour.2003.12.015
  10. K. A. Striebel, A. Sierra, J. Shim, C. W. Wang, and A. M. Sastry, Journal of Power Sources, 134, 241, (2004). https://doi.org/10.1016/j.jpowsour.2004.03.052
  11. H. Zheng, G. Liu, X. Song, P. Ridgway, S. Xun, and V. S. Battaglia, J. Electrochem. Soc., 157, A1060, (2010). https://doi.org/10.1149/1.3459878
  12. H. Zheng, L. Tan, G. Liu, X. Song, and V. S. Battaglia, Journal of Power Sources, 208, 52, (2012). https://doi.org/10.1016/j.jpowsour.2012.02.001
  13. H. Zheng, J. Li, X. Song, G. Liu, and V. S. Battaglia, Electrochimica Acta, 71, 258, (2012). https://doi.org/10.1016/j.electacta.2012.03.161
  14. Y. H. Chen, C. W. Wang, X. Zhang, and A. M. Sastry, Journal of Power Sources, 195, 2851, (2010). https://doi.org/10.1016/j.jpowsour.2009.11.044
  15. S. Yu, Y. Chung, M. S. Song, J. H. Nam, and W. I. Cho, J. Appl Electrochem., 42, 443, (2012). https://doi.org/10.1007/s10800-012-0418-0
  16. G. Liu, H. Zheng, A. S. Simens, A. M. Minor, X. Song, and V. S. Battaglia, J. Electrochem. Soc., 154, A1129, (2007). https://doi.org/10.1149/1.2792293

Cited by

  1. Design optimization of LiNi 0.6 Co 0.2 Mn 0.2 O 2 /graphite lithium-ion cells based on simulation and experimental data vol.319, 2016, https://doi.org/10.1016/j.jpowsour.2016.04.052
  2. A comparative investigation of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes vol.5, pp.115, 2015, https://doi.org/10.1039/C5RA19056H
  3. Electrochemical Cycle-Life Characterization of High Energy Lithium-Ion Cells with Thick Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 and Graphite Electrodes vol.164, pp.6, 2017, https://doi.org/10.1149/2.0451706jes
  4. Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO 4 lithium-ion batteries vol.365, 2017, https://doi.org/10.1016/j.jpowsour.2017.08.094
  5. Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries vol.243, 2013, https://doi.org/10.1016/j.jpowsour.2013.06.062
  6. Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries vol.155, 2015, https://doi.org/10.1016/j.electacta.2014.12.005
  7. Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries vol.141, 2014, https://doi.org/10.1016/j.electacta.2014.07.090
  8. Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes vol.8, pp.36, 2016, https://doi.org/10.1021/acsami.6b06344
  9. Future generations of cathode materials: an automotive industry perspective vol.3, pp.13, 2015, https://doi.org/10.1039/C5TA00361J
  10. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters vol.6, pp.1, 2016, https://doi.org/10.1038/srep32639
  11. Effect of LiFePO 4 cathode density and thickness on electrochemical performance of lithium metal polymer batteries prepared by in situ thermal polymerization vol.154, 2015, https://doi.org/10.1016/j.electacta.2014.12.051
  12. Micro-structure evolution and control of lithium-ion battery electrode laminate vol.14, 2017, https://doi.org/10.1016/j.est.2017.09.016
  13. Thin and porous polymer membrane-based electrochromic devices vol.7, pp.4, 2019, https://doi.org/10.1039/C8TC05157G