References
- Abee, T., L. Krockel, and C. Hill. 1995. Bacteriocins: Modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 28: 169-185 https://doi.org/10.1016/0168-1605(95)00055-0
- Atlas, R. M. 1995. Handbook of Media for Environmental Microbiology. CRC Press, Boca Raton, Florida, U.S.A
- Bai, Y., F. D'Aoust, D. L. Smith, and B. T. Driscoll. 2002. Isolation of plant-growth promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48: 230-238 https://doi.org/10.1139/w02-014
- Bloemberg, G. V. and B. J. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350 https://doi.org/10.1016/S1369-5266(00)00183-7
- Chen, H. and D. G. Hoover. 2003. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Safety 2: 82-100
- Delvis-Broughton, J., P. Blackburn, R. J. Evans, and J. Hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69: 193-202 https://doi.org/10.1007/BF00399424
- Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26: 75-91 https://doi.org/10.1146/annurev.py.26.090188.000451
- Gray, E. J. and D. L. Smith. 2005. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37: 395-412 https://doi.org/10.1016/j.soilbio.2004.08.030
- Gray, E. J., K. D. Lee, A. Souleimanov, M. R. Di Falco, X. Zhou, A. Ly, T. C. Charles, B. T. Driscoll, and D. L. Smith. 2006. A novel bacteriocin, thuricin 17, produced by PGPR strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol. 100: 545-554 https://doi.org/10.1111/j.1365-2672.2006.02822.x
- Gray, E. J., M. Di Falco, A. Souleimanov, and D. L. Smith. 2006. Proteomic analysis of the bacteriocin thuricin17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol. Lett. 255: 27-32 https://doi.org/10.1111/j.1574-6968.2005.00054.x
- Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200
- Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888 https://doi.org/10.1111/j.1365-2672.2004.02513.x
- Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414 https://doi.org/10.1038/nature02429
- Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology and applications. Annu. Rev. Microbiol. 56: 117-137 https://doi.org/10.1146/annurev.micro.56.012302.161024
- Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586 https://doi.org/10.1023/A:1026037216893
Cited by
-
Identification and Characterization of a Novel Antibacterial Peptide, Avian
${\beta}$ -Defensin 2 from Ducks vol.47, pp.5, 2008, https://doi.org/10.1007/s12275-009-0068-z - The 3D Solution Structure of Thurincin H, a Bacteriocin with Four Sulfur to α‐Carbon Crosslinks vol.123, pp.37, 2008, https://doi.org/10.1002/ange.201102527
- The 3D Solution Structure of Thurincin H, a Bacteriocin with Four Sulfur to α‐Carbon Crosslinks vol.50, pp.37, 2008, https://doi.org/10.1002/anie.201102527
- Purification and Characterization of a New Bacillus thuringiensis Bacteriocin Active Against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens vol.165, pp.1, 2008, https://doi.org/10.1007/s12010-011-9252-9
- Characterization of a multilayer film activated with Lactobacillus curvatus CRL705 bacteriocins vol.92, pp.6, 2008, https://doi.org/10.1002/jsfa.4703
- Bacillus cereus를 억제하는 Bacillus subtilis HH28의 항균물질 정제와 특성규명 vol.42, pp.4, 2008, https://doi.org/10.4014/kjmb.1411.11003
- Microbial signaling and plant growth promotion vol.94, pp.6, 2008, https://doi.org/10.4141/cjps2013-148
- Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria vol.3, pp.4, 2014, https://doi.org/10.3390/antibiotics3040461
- The Plant Growth Regulator Lipo-chitooligosaccharide (LCO) Enhances the Germination of Canola (Brassica napus [L.]) vol.34, pp.1, 2008, https://doi.org/10.1007/s00344-014-9456-7
- Antimicrobial peptides of the genus Bacillus: a new era for antibiotics vol.61, pp.2, 2008, https://doi.org/10.1139/cjm-2014-0613
- Bacteriocins from the rhizosphere microbiome – from an agriculture perspective vol.6, pp.None, 2008, https://doi.org/10.3389/fpls.2015.00909
- Proteomic Studies on the Effects of Lipo-Chitooligosaccharide and Thuricin 17 under Unstressed and Salt Stressed Conditions in Arabidopsis thaliana vol.7, pp.None, 2008, https://doi.org/10.3389/fpls.2016.01314
- A Proteomic Approach to Lipo-Chitooligosaccharide and Thuricin 17 Effects on Soybean GerminationUnstressed and Salt Stress vol.11, pp.8, 2008, https://doi.org/10.1371/journal.pone.0160660
- Antimicrobial peptide KR-32 alleviates Escherichia coli K88-induced fatty acid malabsorption by improving expression of fatty acid transporter protein 4 (FATP4)1 vol.97, pp.6, 2008, https://doi.org/10.1093/jas/skz110
- Thuricin17 Production and Proteome Differences in Bacillus thuringiensis NEB17 Cell-Free Supernatant Under NaCl Stress vol.5, pp.None, 2008, https://doi.org/10.3389/fsufs.2021.630628