DOI QR코드

DOI QR Code

Stability and Antibacterial Activity of Bacteriocins Produced by Bacillus thuringiensis and Bacillus thuringiensis ssp. kurstaki

  • Jung, Woo-Jin (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center (EFARC), Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Mabood, Fazli (Department of Plant Science, McGill University, Macdonald Campus) ;
  • Souleimanov, Alfred (Department of Plant Science, McGill University, Macdonald Campus) ;
  • Zhou, Xiaomin (Department of Plant Science, McGill University, Macdonald Campus) ;
  • Jaoua, Samir (Laboratory of Biopesticides, Center of Biotechnology) ;
  • Kamoun, Fakher (Laboratory of Biopesticides, Center of Biotechnology) ;
  • Smith, Donald L. (Department of Plant Science, McGill University, Macdonald Campus)
  • Published : 2008.11.30

Abstract

Bacteriocins are antimicrobial peptides that are produced by bacteria and toxic to bacterial strains closely related to the producer strain. It has previously been reported that Bacillus thuringiensis strain NEB17 and Bacillus thuringiensis subsp. kurstaki BUPM4 produce the bacteriocins thuricin 17 (3,162 Da) and bacthuricin F4 (3,160.05 Da), respectively. Here, we demonstrate that these bacteriocins have functional similarities and show a similar spectrum of antimicrobial activities against indicator strains. We also studied the effects of sterilization methods on the recovery and biological activities of these bacteriocins. They were completely degraded by autoclaving and the two were similarly affected by the tested filter membranes. Polyvinylidene fluoride (PVDF), polyestersulfone (PES), and cellulose acetate (CA) are suitable for filter sterilization of these bacteriocins. The two bacteriocins were stable across a range of storage conditions. These data will facilitate their utilization in food preservation or agricultural applications.

Keywords

References

  1. Abee, T., L. Krockel, and C. Hill. 1995. Bacteriocins: Modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 28: 169-185 https://doi.org/10.1016/0168-1605(95)00055-0
  2. Atlas, R. M. 1995. Handbook of Media for Environmental Microbiology. CRC Press, Boca Raton, Florida, U.S.A
  3. Bai, Y., F. D'Aoust, D. L. Smith, and B. T. Driscoll. 2002. Isolation of plant-growth promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48: 230-238 https://doi.org/10.1139/w02-014
  4. Bloemberg, G. V. and B. J. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350 https://doi.org/10.1016/S1369-5266(00)00183-7
  5. Chen, H. and D. G. Hoover. 2003. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Safety 2: 82-100
  6. Delvis-Broughton, J., P. Blackburn, R. J. Evans, and J. Hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69: 193-202 https://doi.org/10.1007/BF00399424
  7. Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26: 75-91 https://doi.org/10.1146/annurev.py.26.090188.000451
  8. Gray, E. J. and D. L. Smith. 2005. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37: 395-412 https://doi.org/10.1016/j.soilbio.2004.08.030
  9. Gray, E. J., K. D. Lee, A. Souleimanov, M. R. Di Falco, X. Zhou, A. Ly, T. C. Charles, B. T. Driscoll, and D. L. Smith. 2006. A novel bacteriocin, thuricin 17, produced by PGPR strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol. 100: 545-554 https://doi.org/10.1111/j.1365-2672.2006.02822.x
  10. Gray, E. J., M. Di Falco, A. Souleimanov, and D. L. Smith. 2006. Proteomic analysis of the bacteriocin thuricin17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol. Lett. 255: 27-32 https://doi.org/10.1111/j.1574-6968.2005.00054.x
  11. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200
  12. Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888 https://doi.org/10.1111/j.1365-2672.2004.02513.x
  13. Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414 https://doi.org/10.1038/nature02429
  14. Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology and applications. Annu. Rev. Microbiol. 56: 117-137 https://doi.org/10.1146/annurev.micro.56.012302.161024
  15. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586 https://doi.org/10.1023/A:1026037216893

Cited by

  1. Identification and Characterization of a Novel Antibacterial Peptide, Avian ${\beta}$-Defensin 2 from Ducks vol.47, pp.5, 2008, https://doi.org/10.1007/s12275-009-0068-z
  2. The 3D Solution Structure of Thurincin H, a Bacteriocin with Four Sulfur to α‐Carbon Crosslinks vol.123, pp.37, 2008, https://doi.org/10.1002/ange.201102527
  3. The 3D Solution Structure of Thurincin H, a Bacteriocin with Four Sulfur to α‐Carbon Crosslinks vol.50, pp.37, 2008, https://doi.org/10.1002/anie.201102527
  4. Purification and Characterization of a New Bacillus thuringiensis Bacteriocin Active Against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens vol.165, pp.1, 2008, https://doi.org/10.1007/s12010-011-9252-9
  5. Characterization of a multilayer film activated with Lactobacillus curvatus CRL705 bacteriocins vol.92, pp.6, 2008, https://doi.org/10.1002/jsfa.4703
  6. Bacillus cereus를 억제하는 Bacillus subtilis HH28의 항균물질 정제와 특성규명 vol.42, pp.4, 2008, https://doi.org/10.4014/kjmb.1411.11003
  7. Microbial signaling and plant growth promotion vol.94, pp.6, 2008, https://doi.org/10.4141/cjps2013-148
  8. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria vol.3, pp.4, 2014, https://doi.org/10.3390/antibiotics3040461
  9. The Plant Growth Regulator Lipo-chitooligosaccharide (LCO) Enhances the Germination of Canola (Brassica napus [L.]) vol.34, pp.1, 2008, https://doi.org/10.1007/s00344-014-9456-7
  10. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics vol.61, pp.2, 2008, https://doi.org/10.1139/cjm-2014-0613
  11. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective vol.6, pp.None, 2008, https://doi.org/10.3389/fpls.2015.00909
  12. Proteomic Studies on the Effects of Lipo-Chitooligosaccharide and Thuricin 17 under Unstressed and Salt Stressed Conditions in Arabidopsis thaliana vol.7, pp.None, 2008, https://doi.org/10.3389/fpls.2016.01314
  13. A Proteomic Approach to Lipo-Chitooligosaccharide and Thuricin 17 Effects on Soybean GerminationUnstressed and Salt Stress vol.11, pp.8, 2008, https://doi.org/10.1371/journal.pone.0160660
  14. Antimicrobial peptide KR-32 alleviates Escherichia coli K88-induced fatty acid malabsorption by improving expression of fatty acid transporter protein 4 (FATP4)1 vol.97, pp.6, 2008, https://doi.org/10.1093/jas/skz110
  15. Thuricin17 Production and Proteome Differences in Bacillus thuringiensis NEB17 Cell-Free Supernatant Under NaCl Stress vol.5, pp.None, 2008, https://doi.org/10.3389/fsufs.2021.630628