• Title/Summary/Keyword: Polymer volume ratio

Search Result 105, Processing Time 0.019 seconds

Preparation and Characteristics of Acrylic Pressure-Sensitive Adhesives (아크릴계 점착제의 제조 및 점착특성에 관한 연구)

  • Kim, Nam-Seok;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.316-324
    • /
    • 2001
  • To prepare an acrylic type pressure-sensitive adhesive, quarternary polymers were synthesized from butyl acrylate (BA), 2-ethyl hexyl acrylate (2-EHA), methyl methacrylate (MMA), and 2-hydroxy ethyl methacrylate (2-HEMA). The quarternary polymers were identified by FT-IR and Molecular weight was measured by Gel Pearmeation Chromatography. Also, viscosity, solid content and peel strength were examined. The peel strength was 160 $g_{f}/25$ mm when the volume ratio of feed monomer to solvent was 1.3:1, and the ratio was relevant to commercial usage. The pot life of adhesive was 30 sec at the 50 m/min of heat treatment rate at, and it indicated that the minimum drying time was 30 sec. In weathering resistance test, peel strength of $160{\sim}180$ $g_{f}/25$ mm after 1000 h, with no residual remains on the adhesive surface.

Buckling behavior of nonlinear FG-CNT reinforced nanocomposite beam reposed on Winkler/Pasternak foundation

  • Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Zakaria Belabed;Abdelmoumen Anis Bousahla;Mohamed Abdelaziz Salem;Khaled Mohamed Khedher
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.297-305
    • /
    • 2024
  • This study investigates the buckling behavior of CNTRC beams on a Winkler-Pasternak elastic foundation, considering their stiffness. To achieve the highest accuracy, the shear stiffness is taken into account based on the Higher-order Shear Deformation Theory (HSDT). A novel exponential power-law distribution of the CNT volume fraction across the beam thickness is employed to model CNTRC beams. Various reinforcement patterns are incorporated into the polymer matrix, featuring single-walled carbon nanotubes (SWCNT) that are both aligned and distributed. The effective mechanical properties of the CNTRC beam are predicted using the rule of mixtures. Hamilton's principle is applied to derive the differential equations of motion. This theoretical framework enables the validation of the approach by comparing numerical simulation results with previous studies. The impact of the exponent order (n), CNT volume fraction, geometrical ratio, and Winkler-Pasternak parameters on buckling analysis is thoroughly presented and discussed. The results indicate that, among the different types of analyzed CNTRC beams, the X-Beam pattern demonstrates the highest buckling load capacity.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

The Electroresponse Properties of Alginate Films under the Electric Field (알지네이트 필름의 전기장 하에서의 응답 특성)

  • 김인중;강휘원;정창남
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Alginate is a natural ionic polymer including numerous anionic groups and can be actuated by the ionic group under the electric field. The crosslinked alginate films were fabricated with CaCl$_2$. The thermal, mechanical and electroresponse properties of the films were investigated by thermogravimetric analysis, tensile and bending tests. The initial degradation and tensile strength increased according to the degree of crosslinking. Also, the swelling ratio of the films increased with decreasing degree of crosslinking and increasing pH due to free volume and electrostatic repulsion. The films actuated by an electric stimulus exhibited gentle and flexible action like a pendulum. In the electric field, the electric stimuli such as the applied voltage, ionic strength and kind of electrolyte solution had an effect on the electroresponse of the films. Alginate films with 5 wt% crosslinking agent showed the highest bending angle and reversible bending behavior. When the ionic strength of NaCl and KCl electrolyte solution was 0.1 M, the films showed the highest electroresponse. The bending behavior of the films increased with the applied voltage.

Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites (다중벽 탄소나노튜브의 형상인자에 따른 고분자 복합재료의 탄성계수에 관한 연구)

  • Suhr, Jonghwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.89-94
    • /
    • 2014
  • The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates

  • Lakshmipathi, Jakkamputi;Vasudevan, Rajamohan
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2019
  • In the present study, the various dynamic properties of MWCNT embedded fiber reinforced polymer uniform and tapered composite (MWCNT-FRP) plates are investigated. Various configurations of a tapered composite plate with ply-drop off and uniform composite plate have been considered for the development of the finite element formulation and experimental investigations. First order shear deformation theory (FSDT) has been used to derive the kinetic and potential energy equations of the hybrid composite plates by including the effect of rotary inertia, shear deformation and non-uniformity in thickness of the plate. The governing equations of motion of FRP composite plates without and with MWCNT reinforcement are derived by considering a nine- node rectangular element with five degrees of freedom (DOF) at each node. The effectiveness of the developed finite element formulation has been demonstrated by comparing the natural frequencies and damping ratio of FRP composite plates without and with MWCNT reinforcement obtained experimentally. Various parametric studies are also performed to study the effect of CNT volume fraction and CNT aspect ratio of the composite plate on the natural frequencies of different configurations of CNT reinforced hybrid composite plates. Further the forced vibration analysis is performed to compare the dynamic response of the various configurations of MWCNT-GFRP composite plate with GFRP composite plate under harmonic excitations. It was observed that the fundamental natural frequency and damping ratio of the GFRP composite plate increase approximately 8% and 37% respectively with 0.5wt% reinforcement of MWCNT under CFCF boundary condition. The natural frequencies of MWCNT-GFRP hybrid composite plates tend to decrease with the increase of MWCNT volume fraction beyond 2% due to agglomeration of CNT's. It is also observed that the aspect ratio of the CNT has negligible effect on the improvement of dynamics properties due to randomly orientation of CNT's.

Seismic response of NFRP reinforced RC frame with shape memory alloy components

  • Varkani, Mohamad Motalebi;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Creation of plastic deformation under seismic loads, is one of the most serious subjects in RC structures with steel bars which reduces the life threatening risks and increases dissipation of energy. Shape memory alloy (SMA) is one of the best choice for the relocating plastic hinges. In a challenge to study the seismic response of concrete moment resisting frame (MRF), this article investigates numerically a new type of concrete frames with nano fiber reinforced polymer (NFRP) and shape memory alloy (SMA) hinges, simultaneously. The NFRP layer is containing carbon nanofibers with agglomeration based on Mori-Tanaka model. The tangential shear deformation (TASDT) is applied for modelling of the structure and the continuity boundary conditions are used for coupling of the motion equations. In SMA connections between beam and columns, since there is phase transformation, hence, the motion equations of the structure are coupled with kinetic equations of phase transformation. The Hernandez-Lagoudas theory is applied for demonstrating of pseudoelastic characteristics of SMA. The corresponding motion equations are solved by differential cubature (DC) and Newmark methods in order to obtain the peak ground acceleration (PGA) and residual drift ratio for MRF-2%. The main impact of this paper is to present the influences of the volume percent and agglomeration of nanofibers, thickness and length of the concrete frame, SMA material and NFRP layer on the PGA and drift ratio. The numerical results revealed that the with increasing the volume percent of nanofibers, the PGA is enhanced and the residual drift ratio is reduced. It is also worth to mention that PGA of concrete frame with NFRP layer containing 2% nanofibers is approximately equal to the concrete frame with steel bars.

Characteristics of Concrete Polymer Composite Using Atomizing Reduction Steel Slag (I) (Use of PMMA as a Shrinkage Reducing Agent) (아토마이징 제강 환원슬래그를 사용한 폴리머 콘크리트 복합재료의 특성 (I) (PMMA 수축저감재를 사용))

  • Hwang, Eui Hwan;Kim, Jin Man
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • In order to use the spherical atomizing reduction steel slag (ladle furnace slag, LFS) instead of the fine aggregate of polymer concrete composites, various specimens were prepared with various replacement ratios of atomizing reduction steel slag and the addition ratios of polymer binder. Physical properties of these specimens were investigated through the absorption test, the compressive strength test, the flexural strength test, the hot water resistance test, the pore analysis and the micro-structure using scanning electron microscope. Results showed that the compressive strength and flexural strength of specimens with 7.5% of polymer binders increased with the increase of replacement ratios of atomizing reduction steel slag, but those of the specimens with 8.0% or more of polymer binders showed a maximum strength at a certain replacement ratio due to the material segregation causing the increase of fluidity. By hot water resistance tests, the compressive strength, flexural strength, average pore diameter, and bulk density decreased but the total pore volume and pore diameter increased. It was concluded that the amount of polymer binders could be reduced by maximum 23.8%, because the workability of the polymer concrete was remarkably improved by using the atomizing reduction steel slag instead of fine aggregate. However, since the use of atomizing reduction steel slag decreased the resistance of the polymer concrete to hot water, further studies are required.

High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems (Polycaprolactone, 디클로로메탄, 이산화탄소로 구성된 3성분계 고압 상거동 측정)

  • Gwon, JungMin;Shin, Hun Yong;Kim, Soo Hyun;Kim, Hwayong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.193-198
    • /
    • 2015
  • The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the $CO_2$/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the $CO_2$-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete

  • Bauchkar, S.D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.561-583
    • /
    • 2018
  • A variety of polycarboxylate ether (PCE)-based superplasticizers are commercially available. Their influence on the rheological retention and slump loss in respect of concrete differ considerably. Fluidity and slump loss are the cardinal features responsible for the quality of concrete. These are related to the dispersion of cement particles and the hydration process which are greatly influenced by type of polycarboxylate ether (PCE)-based superplasticizers. On the backdrop of relatively less studies in the context of rheological retention of high strength self-consolidating concrete (HS-SCC), the experimental investigations were carried out aiming at quantifying the effect of the six different PCE polymers (PCE 1-6) on the rheological retention of HS-SCC mixes containing two types of Ordinary Portland Cements (OPC) and unwashed crushed sand as the fine aggregate. The tests that were carried out included $T_{500}$, V-Funnel, yield stress and viscosity retention tests. The supplementary cementitious materials such as fly ash (FA) and micro-silica (MS) were also used in ternary blend keeping the mix paste volume and flow of concrete constant. Low water to binder ratio was used. The results reveal that not only the PCEs of different polymer groups behave differently, but even the PCEs of same polymer groups also behave differently. The study also indicates that the HS-SCC mixes containing PCE 6 and PCE 5 performed better as compared to the mixes containing PCE 1, PCE 2, PCE 3 and PCE 4 in respect of all the rheological tests. The PCE 6 is a new class of chemical admixtures known as Polyaryl Ether (PAE) developed by BASF to provide better rheological properties in even in HS-SCC mixes at low water to binder mix. In the present study, the PCE 6, is found to help not only in reduction in the plastic viscosity and yield stress, but also provide good rheological retention over the period of 180 minutes. Further, the early compressive strength properties (one day compressive strength) highly depend on the type of PCE polymer. The side chain length of PCE polymer and the fineness of the cement considerably affect the early strength gain.