DOI QR코드

DOI QR Code

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ;
  • Na, Youngseung (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Park, Hee Young (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyoung-Juhn (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ;
  • Song, Juhun (School of Mechanical Engineering, Pusan National University) ;
  • Yoo, Sung Jong (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Yong-Tae (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Park, Hyun S. (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Jong Hyun (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
  • Received : 2021.02.17
  • Accepted : 2021.03.30
  • Published : 2021.11.28

Abstract

Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

Keywords

Acknowledgement

This study was supported by the Korea CCS R&D Center (KCRC) grant funded by the Korean government (Ministry of Science and ICT (MSIT)) (No. 2013M1A8A1038315), the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2019M3E6A1063674), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the MOTIE (No. 20173010032210 and No. 2019281010007A). This study was also financially supported by the Institutional Project of Korean Institute of Science and Technology (KIST).

References

  1. R. Lindsey, Climate Change: Atmospheric Carbon Dioxide, 2020.
  2. W. Wang, Y. Yung, A. Lacis, T. Mo, J. Hansen, Science, 1976, 194(4266), 685-690. https://doi.org/10.1126/science.194.4266.685
  3. D.A. Lashof, D.R. Ahuja, Nature, 1990, 344(6266), 529-531. https://doi.org/10.1038/344529a0
  4. C. Le Quere, M.R. Raupach, J.G. Canadell, G. Marland, Nat. Geosci., 2009, 2(12), 831-836. https://doi.org/10.1038/ngeo689
  5. M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, Science, 2002, 298(5595), 981-987. https://doi.org/10.1126/science.1072357
  6. K. Riahi, E.S. Rubin, M.R. Taylor, L. Schrattenholzer, D. Hounshell, Energy Economics, 2004, 26(4), 539-564. https://doi.org/10.1016/j.eneco.2004.04.024
  7. S. Chu, Science, 2009. 325(5948), 1599. https://doi.org/10.1126/science.1181637
  8. J.C. Abanades, E.S. Rubin, M. Mazzotti, H.J. Herzog, Energy Environ. Sci., 2017, 10(12), 2491-2499. https://doi.org/10.1039/c7ee02819a
  9. F.M. Baena-Moreno, M. Rodriguez-Galan, F. Vega, B. Alonso-Farinas, L.F. Vilches Arenas, B. Navarrete, Energy Sources Part A: Recovery, Utilization,, E. Effects, 2019, 41(12), 1403-1433. https://doi.org/10.1080/15567036.2018.1548518
  10. N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nat. Clim. Change., 2017, 7(4), 243-249. https://doi.org/10.1038/nclimate3231
  11. A.S.R. Machado, A.V. Nunes, M.N. da Ponte, J. Supercrit. Fluid., 2018, 134, 150-156. https://doi.org/10.1016/j.supflu.2017.12.023
  12. M.E. Dry, Catal. Today, 2002, 71(3-4), 227-241. https://doi.org/10.1016/S0920-5861(01)00453-9
  13. S. Hernandez, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Green Chem., 2017, 19(10), 2326-2346. https://doi.org/10.1039/c7gc00398f
  14. Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc., 2012, 134(49), 19969-19972. https://doi.org/10.1021/ja309317u
  15. W. Zhu, R. Michalsky, O.n. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2013, 135(45), 16833-16836. https://doi.org/10.1021/ja409445p
  16. H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc., 2014, 136(47), 16473-16476. https://doi.org/10.1021/ja508879j
  17. W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136(46), 16132-16135. https://doi.org/10.1021/ja5095099
  18. S. Back, M.S. Yeom, Y. Jung, ACS Catal., 2015, 5(9), 5089-5096. https://doi.org/10.1021/acscatal.5b00462
  19. J.-H. Kim, H. Woo, S.-W. Yun, H.-W. Jung, S. Back, Y. Jung, Y.-T. Kim, Appl. Catal. B-Environ., 2017, 213, 211-215. https://doi.org/10.1016/j.apcatb.2017.05.001
  20. X. Peng, S.G. Karakalos, W.E. Mustain, ACS Appl. Mater. Interfaces., 2018, 10(2), 1734-1742. https://doi.org/10.1021/acsami.7b16164
  21. J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore, F. Jiao, ACS Catal., 2015, 5(8), 4586-4591. https://doi.org/10.1021/acscatal.5b00922
  22. W. Luo, J. Zhang, M. Li, A. Zuttel, ACS Catal., 2019, 9(5), 3783-3791. https://doi.org/10.1021/acscatal.8b05109
  23. Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig, H. Wang, J. Am. Chem. Soc., 2016, 138(26), 8076-8079. https://doi.org/10.1021/jacs.6b04746
  24. J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim, S.-K. Kim, Chem. Eng. J., 2016, 299, 37-44. https://doi.org/10.1016/j.cej.2016.04.037
  25. W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, J. Am. Chem. Soc., 2017, 139(5), 1885-1893. https://doi.org/10.1021/jacs.6b10435
  26. F. Jia, X. Yu, L. Zhang, J. Power Sources, 2014, 252, 85-89. https://doi.org/10.1016/j.jpowsour.2013.12.002
  27. Y. Mun, S. Lee, A. Cho, S. Kim, J.W. Han, J. Lee, Appl. Catal. B-Environ., 2019, 246, 82-88. https://doi.org/10.1016/j.apcatb.2019.01.021
  28. C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, J. Electrochem. Soc., 2008, 155(1), B42-B49. https://doi.org/10.1149/1.2801871
  29. C. Delacourt, J. Newman, J. Electrochem. Soc., 2010, 157(12), B1911. https://doi.org/10.1149/1.3502533
  30. E.J. Dufek, T.E. Lister, M.E. McIlwain, J. Appl. Electrochem., 2011, 41(6), 623-631. https://doi.org/10.1007/s10800-011-0271-6
  31. E.J. Dufek, T.E. Lister, S.G. Stone, M.E. McIlwain, J. Electrochem. Soc., 2012, 159(9), F514. https://doi.org/10.1149/2.011209jes
  32. Y.H. Chung, M.G. Ha, Y. Na, H.Y. Park, H.J. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, S.W. Lee, H. S. Park, Y-T Kim, J. H. Jang, Electroanalysis, 2019, 31(7), 1401-1408. https://doi.org/10.1002/elan.201800782
  33. S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, J. Am. Chem. Soc., 2014, 136(22), 7845-7848. https://doi.org/10.1021/ja5031529
  34. A. Goyal, G. Marcandalli, V.A. Mints, M.T.M. Koper, J. Am. Chem. Soc., 2020, 142(9), 4154-4161. https://doi.org/10.1021/jacs.9b10061
  35. A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2001, 2(482), 580-632.