Acknowledgement
This study was supported by the Korea CCS R&D Center (KCRC) grant funded by the Korean government (Ministry of Science and ICT (MSIT)) (No. 2013M1A8A1038315), the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2019M3E6A1063674), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the MOTIE (No. 20173010032210 and No. 2019281010007A). This study was also financially supported by the Institutional Project of Korean Institute of Science and Technology (KIST).
References
- R. Lindsey, Climate Change: Atmospheric Carbon Dioxide, 2020.
- W. Wang, Y. Yung, A. Lacis, T. Mo, J. Hansen, Science, 1976, 194(4266), 685-690. https://doi.org/10.1126/science.194.4266.685
- D.A. Lashof, D.R. Ahuja, Nature, 1990, 344(6266), 529-531. https://doi.org/10.1038/344529a0
- C. Le Quere, M.R. Raupach, J.G. Canadell, G. Marland, Nat. Geosci., 2009, 2(12), 831-836. https://doi.org/10.1038/ngeo689
- M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, Science, 2002, 298(5595), 981-987. https://doi.org/10.1126/science.1072357
- K. Riahi, E.S. Rubin, M.R. Taylor, L. Schrattenholzer, D. Hounshell, Energy Economics, 2004, 26(4), 539-564. https://doi.org/10.1016/j.eneco.2004.04.024
- S. Chu, Science, 2009. 325(5948), 1599. https://doi.org/10.1126/science.1181637
- J.C. Abanades, E.S. Rubin, M. Mazzotti, H.J. Herzog, Energy Environ. Sci., 2017, 10(12), 2491-2499. https://doi.org/10.1039/c7ee02819a
- F.M. Baena-Moreno, M. Rodriguez-Galan, F. Vega, B. Alonso-Farinas, L.F. Vilches Arenas, B. Navarrete, Energy Sources Part A: Recovery, Utilization,, E. Effects, 2019, 41(12), 1403-1433. https://doi.org/10.1080/15567036.2018.1548518
- N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nat. Clim. Change., 2017, 7(4), 243-249. https://doi.org/10.1038/nclimate3231
- A.S.R. Machado, A.V. Nunes, M.N. da Ponte, J. Supercrit. Fluid., 2018, 134, 150-156. https://doi.org/10.1016/j.supflu.2017.12.023
- M.E. Dry, Catal. Today, 2002, 71(3-4), 227-241. https://doi.org/10.1016/S0920-5861(01)00453-9
- S. Hernandez, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Green Chem., 2017, 19(10), 2326-2346. https://doi.org/10.1039/c7gc00398f
- Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc., 2012, 134(49), 19969-19972. https://doi.org/10.1021/ja309317u
- W. Zhu, R. Michalsky, O.n. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2013, 135(45), 16833-16836. https://doi.org/10.1021/ja409445p
- H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc., 2014, 136(47), 16473-16476. https://doi.org/10.1021/ja508879j
- W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136(46), 16132-16135. https://doi.org/10.1021/ja5095099
- S. Back, M.S. Yeom, Y. Jung, ACS Catal., 2015, 5(9), 5089-5096. https://doi.org/10.1021/acscatal.5b00462
- J.-H. Kim, H. Woo, S.-W. Yun, H.-W. Jung, S. Back, Y. Jung, Y.-T. Kim, Appl. Catal. B-Environ., 2017, 213, 211-215. https://doi.org/10.1016/j.apcatb.2017.05.001
- X. Peng, S.G. Karakalos, W.E. Mustain, ACS Appl. Mater. Interfaces., 2018, 10(2), 1734-1742. https://doi.org/10.1021/acsami.7b16164
- J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore, F. Jiao, ACS Catal., 2015, 5(8), 4586-4591. https://doi.org/10.1021/acscatal.5b00922
- W. Luo, J. Zhang, M. Li, A. Zuttel, ACS Catal., 2019, 9(5), 3783-3791. https://doi.org/10.1021/acscatal.8b05109
- Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig, H. Wang, J. Am. Chem. Soc., 2016, 138(26), 8076-8079. https://doi.org/10.1021/jacs.6b04746
- J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim, S.-K. Kim, Chem. Eng. J., 2016, 299, 37-44. https://doi.org/10.1016/j.cej.2016.04.037
- W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, J. Am. Chem. Soc., 2017, 139(5), 1885-1893. https://doi.org/10.1021/jacs.6b10435
- F. Jia, X. Yu, L. Zhang, J. Power Sources, 2014, 252, 85-89. https://doi.org/10.1016/j.jpowsour.2013.12.002
- Y. Mun, S. Lee, A. Cho, S. Kim, J.W. Han, J. Lee, Appl. Catal. B-Environ., 2019, 246, 82-88. https://doi.org/10.1016/j.apcatb.2019.01.021
- C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, J. Electrochem. Soc., 2008, 155(1), B42-B49. https://doi.org/10.1149/1.2801871
- C. Delacourt, J. Newman, J. Electrochem. Soc., 2010, 157(12), B1911. https://doi.org/10.1149/1.3502533
- E.J. Dufek, T.E. Lister, M.E. McIlwain, J. Appl. Electrochem., 2011, 41(6), 623-631. https://doi.org/10.1007/s10800-011-0271-6
- E.J. Dufek, T.E. Lister, S.G. Stone, M.E. McIlwain, J. Electrochem. Soc., 2012, 159(9), F514. https://doi.org/10.1149/2.011209jes
- Y.H. Chung, M.G. Ha, Y. Na, H.Y. Park, H.J. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, S.W. Lee, H. S. Park, Y-T Kim, J. H. Jang, Electroanalysis, 2019, 31(7), 1401-1408. https://doi.org/10.1002/elan.201800782
- S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, J. Am. Chem. Soc., 2014, 136(22), 7845-7848. https://doi.org/10.1021/ja5031529
- A. Goyal, G. Marcandalli, V.A. Mints, M.T.M. Koper, J. Am. Chem. Soc., 2020, 142(9), 4154-4161. https://doi.org/10.1021/jacs.9b10061
- A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2001, 2(482), 580-632.