DOI QR코드

DOI QR Code

Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites

다중벽 탄소나노튜브의 형상인자에 따른 고분자 복합재료의 탄성계수에 관한 연구

  • Suhr, Jonghwan (Dept. of Polymer Science & Engineering, Sungkyunkwan Univ.)
  • 서종환 (성균관대학교 고분자시스템공학과)
  • Received : 2013.10.22
  • Accepted : 2013.11.02
  • Published : 2014.01.01

Abstract

The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

탄소나노튜브는 우수한 기계적 특성으로 인해 주목받고 있으며, 다양한 산업 분야로의 잠재적 활용성을 갖는 고강도/고강성의 나노복합재료를 설계/제작하기 위한 다양한 연구가 이루어 지고 있다. 본 논문에서는 다중벽 탄소나노튜브를 이용한 강화 복합재료를 효과적으로 설계하고, 기계적 물성을 예측/평가하기 위한 미시역학적 해석 방법 연구를 수행하였다. 이를 위해 먼저 대표체적요소 모델을 설계하고 이를 이용한 유한요소 해석을 통해서 강화 복합재료의 기계적 물성을 평가하였다. 특히 MWCNT 의 각 형상인자에 따른 복합재료의 탄성계수 변화를 예측하고, 각 인자들의 영향을 정성적으로 평가하였다. 더불어 형상인자들의 복합적 조건에서의 탄성계수에 대한 영향 평가도 수행하였다.

Keywords

References

  1. Hong, S. H., 2010, "Status and Prospect of CNT/Metal Nanocomposites," The National Academy of Science, Vol. 49, No. 2, pp. 79-99.
  2. Ma, P. C., Siddiqui, N. A., Marom, G. and Kim, J. K, 2010, "Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A review," Composites Part A, Vol. 41, No. 10, pp. 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  3. Sun, L., Gibson, R. F., Gordaninejad, F. and Suhr, J., 2009, "Energy Absorption Capability of Nanocomposites: A Review," Composites Science and Technology, Vol. 69, No. 14, pp. 2392-2409, https://doi.org/10.1016/j.compscitech.2009.06.020
  4. Gibson, R. F., 2012, Principles of Composite Material Mechanics, CRC Press, Boca Raton, pp. 219-282.
  5. Fisher, F. T., Bradshaw, R. D. and Brinson, L. C., 2003, "Fiber Waviness in Nanotube-Reinforced Polymer Composites - I: Modulus Predictions using Effective Nanotube Properties," Composites Science and Technology, Vol. 63, No. 11, pp. 1689-1703. https://doi.org/10.1016/S0266-3538(03)00069-1
  6. Anumandla, V. and Gibson, R. F., 2006, "A Comprehensive Closed Form Micromechanics Model for Estimating the Elastic Modulus of Nanotube- Reinforced Composites," Composites Part A, Vol. 37, No. 12, pp. 2178-2185. https://doi.org/10.1016/j.compositesa.2005.09.016
  7. Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F. and Chou, T. W., 2002, "Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composites," Journal of Applied Physics, Vol. 91, No. 9, pp. 6034-6037. https://doi.org/10.1063/1.1466880
  8. Wagner, H. D., Lourie, O., Feldman, Y. and Tenne, R., 1998, "Stress Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix," Applied Physics Letters, Vol. 72, No. 2, pp. 188-190. https://doi.org/10.1063/1.120680
  9. Wagner, H. D., 2002, "Nanotube-Polymer Adhesion: A Mechanics Approach," Chemical Physics Letters, Vol. 361, No. 1/2, pp. 57-61. https://doi.org/10.1016/S0009-2614(02)00948-X
  10. Karimzadeh, F., Ziaei-Rad, S. and Adibi, S., 2007, "Modeling Considerations and Material Properties Evaluation in Analysis of Carbon Nano-Tubes Composite," Metallurgical and Materials Transaction B, Vol. 38B, No. 4, pp. 695-705.
  11. Huang, G., Wang, B. and Lu, H., 2006, "Material Characterization and Modeling of Single-Wall Carbon Nanotube/Polyelectrolyte Multilayer Nanocomposites," Journal of Applied Mechanics, Vol. 73. No. 5, pp. 737-744. https://doi.org/10.1115/1.2206196
  12. Shokrieh M. M. and Rafiee R., 2010, "A Review of the Mechanical Properties of Isolated Carbon Nanotubes and Carbon Nanotube Composite," Mechanics of Composite Materials, Vol. 46, No. 2, pp. 155-172. https://doi.org/10.1007/s11029-010-9135-0
  13. Salvetat, J. P., Kulik, A. J., Bonard, J. M., Briggs, G. A. D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N. A. and Forro, L., 1999, "Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes," Advanced Materials, Vol. 11, No. 2, pp. 161-165. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
  14. Lukic B., Seo, J. W., Couteau, E., Lee, K., Gradecak, S., Berkecz, R., Hernadi, K., Delpeux, S., Cacciaguerra, T., Beguin, F., Fonseca, A., Nagy, J. B., Csanyi, G., Kis, A., Kulik, A. J. and Forro, L., 2005, "Elastic Modulus of Multi-walled Carbon Nanotubes Produced by Catalytic Chemical Vapour Deposition," Applied Physics A, Vol. 80, No. 4, pp. 695-700. https://doi.org/10.1007/s00339-004-3100-5