DOI QR코드

DOI QR Code

Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube

수평 가까운 튜브 표면의 평균 풀비등 열전달계수의 측정

  • Received : 2013.09.08
  • Accepted : 2013.10.18
  • Published : 2014.01.01

Abstract

An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to $9^{\circ}$ in steps of $3^{\circ}$. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of $90^{\circ}$ from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence.

수평에 가깝게 설치된 튜브 원주면에 대해 평균 열전달계수를 결정하기 위한 실험적 연구를 수행하였다. 실험을 위하여 대기압 상태하의 물속에 잠긴 50.8 mm의 스테인리스강 튜브를 사용하였다. 과냉 및 포화 풀비등 조건을 모두 고려하였으며, 튜브 경사각은 수평으로부터 $9^{\circ}$까지 $3^{\circ}$ 간격으로 변경하였다. 포화상태에서는 튜브의 최하부로부터의 방위각이 $90^{\circ}$인 위치에서 측정한 국소비등열전달계수가 평균값으로 취급될 수 있으며, 이러한 경향은 튜브 경사각과는 무관함을 확인하였다. 그러나 물이 과냉상태인 경우, 평균 열전달계수의 위치는 경사각과 열유속에 의존한다. 열전달을 변화시키는 주된 열전달 기구는 액체교란 강도 및 기포군집에 의한 큰 기포 덩어리의 형성과 밀접한 관계가 있는 것으로 설명된다.

Keywords

References

  1. Chun, M. H. and Kang, M. G., 1998, "Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer," ASME, J. Heat Transfer, Vol. 120, pp. 468-476. https://doi.org/10.1115/1.2824272
  2. Kang, K. H., Kim, S., Bae, B. U., Cho, Y. J., Park, Y. S., and Yun, B. J., 2012, "Separate and Integral Effect Tests for Validation of Cooling and Operational Performance of the APR+ Passive Auxiliary Feedwater System," Nuclear Engineering and Technology, Vol. 44, pp. 597-610. https://doi.org/10.5516/NET.02.2012.710
  3. Lance, R. P. and Myers, J. E., 1958, "Local Boiling Coefficients on a Horizontal Tube," A.I.Ch.E. Journal, Vol. 4, pp. 75-80. https://doi.org/10.1002/aic.690040115
  4. Cornwell, K. and Einarsson, J. G., 1990, "Influence of Fluid Flow on Nucleate Boiling from a Tube," Experimental Heat Transfer, Vol. 3, pp. 101-116. https://doi.org/10.1080/08916159008946380
  5. Cornwell, K. and Houston, S. D., 1994, "Nucleate Pool Boiling on Horizontal Tubes: a Convection-based Correlation," Int. J. Heat Mass Transfer, Vol. 37, pp. 303-309.
  6. Gupta, A., Saini, J. S., and Varma, H. K., 1995, "Boiling Heat Transfer in Small Horizontal Tube Bundles at Low Cross-flow Velocities," Int. J. Heat Mass Transfer, Vol. 38, pp. 599-605. https://doi.org/10.1016/0017-9310(94)00282-Z
  7. Kang, M. G., 2005, "Local Pool Boiling Coefficients on the Outside Surface of a Horizontal Tube," ASME, J. Heat Transfer, Vol. 127, pp. 949-953. https://doi.org/10.1115/1.1929785
  8. Sateesh, G., Das, S. K., and Balakrishnan, A. R., 2009, "Experimental Studies on the Effect of Tube Inclination on Nucleate Pool Boiling," Heat Mass Transfer, Vol. 45, pp. 1493-1502. https://doi.org/10.1007/s00231-009-0522-9
  9. Sateesh, G., Das, S. K., and Balakrishnan, A. R., 2005, "Analysis of Pool Boiling Heat Transfer: Effects of Bubbles Sliding on the Heating Surface," Int. J. Heat Mass Transfer, Vol. 48, pp. 1543-1553. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.033
  10. Dominiczak, P. R. and Cieslinski, J. T., 2008, "Circumferential Temperature Distribution during Nucleate Pool Boiling Outside Smooth and Modified Horizontal Tubes," Experimental Thermal and Fluid Science, Vol. 33, pp. 173-177. https://doi.org/10.1016/j.expthermflusci.2008.07.007
  11. Luke, A. and Gorenflo, D., 200, "Heat Transfer and Size Distribution of Active Nucleation Sites in Boiling Propane Outside a Tube," Int. J. Therm. Sci., Vol. 39, pp. 919-930. https://doi.org/10.1016/S1290-0729(00)01189-3
  12. Das, M. K., 2010, "Study of Local Heat Transfer of Saturated Liquids," Proceedings of the 37th International & 4th National Conference on Fluid Mechanics and Fluid Power, Chennai, India, Dec. 16-18.
  13. El-Genk, M. S. and Gao, C., 1999, "Experiments on Pool Boiling of Water from Downward-facing Hemispheres," Nuclear Technology, Vol. 125, pp. 52-69. https://doi.org/10.13182/NT99-A2932
  14. Coleman, H. W. and Steele, W. G., 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley & Sons.
  15. Holman, H. W., 1997, Heat Transfer, 8th ed., McGraw-Hill.
  16. Ginoux, J. J., 1978, Two-Phase Flows and Heat Transfer with Application to Nuclear Reactor Design Problems, Hemisphere Publishing Corporation.