• 제목/요약/키워드: Plume Interference

검색결과 13건 처리시간 0.02초

다공확장벽을 이용한 플룸간섭의 제어 (Control of Plume Interference Using a Porous Extension)

  • Young-Ki Lee;Heuy-Dong Kim
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

미사일 동체에서 발생하는 Plume 간섭 효과와 제어 (Plume Interference Effect on a Missile Body and Its Control)

  • 임채민;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1730-1735
    • /
    • 2003
  • The plume-induced shock wave is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The knowledge base of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation particularly at high plume to exit pressure ratio. Test model configurations are a simplified missile model and two rounded and porous afterbodies to simulate moderately and highly underexpanded exhaust plumes at the transonic/supersonic speeds. The result shows that the rounded afterbody and porous wall attached at the missile base can alleviate the plume-induced shock wave phenomenon, and improve the control of the missile body.

  • PDF

다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어 (Control of Plume Interference Effects on a Missile Body Using a Porous Extension)

  • Young-Ki Lee;Heuy-Dong Kim
    • 한국추진공학회지
    • /
    • 제7권4호
    • /
    • pp.33-38
    • /
    • 2003
  • 플룸간섭 현상은 플룸에 의한 경계층 유동의 박리, 강한 전단층의 발생, 그리고 다수의 충격파들이 박리유동 및 전단층과 상호작용하게 되는 매우 복잡한 유동현상으로, 현재 미사일의 후미부에서 발생하는 플룸간섭 현상의 상세에 관해서는 잘 알려져 있지 않다. 본 연구에서는 초음속 미사일의 동체후미부에서 발생하는 플룸간섭 현상의 특징 및 동체기저부에 설치된 다공확장벽(porous extension)의 플룸간섭 현상에 대한 영향을 수치해석적으로 조사하였다. 그 결과, 다공확장벽이 플룸에 의한 충격파와 경계층 유동의 박리를 완화시켜 미사일 동체의 제어성능이 향상될 수 있음을 알았다.

Missile Afterbody에서 Plume-Induced Flow의 제어에 관한 연구 (A Study of the Control of Plume-Induced Flow over a Missile Afterbody)

  • 임채민;;이장창;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.45-48
    • /
    • 2003
  • plume 간섭 현상은 plume에 의한 경계층 유동의 박리, 강한 전단층 발생, 그리고 다수의 충격파들이 박리유동 및 전단층과 상호작용하게 되는 매우 복잡한 유동현상이며, 현재 미사일 등의 후미부에서 발생하는 plume 간섭 현상의 상세에 관해서는 잘 알려져 있지 않다. 본 연구에서는 plume 간섭현상을 이해하기 위하여 수치계산을 수행하였다. 수치계산에서는 천음속 및 초음속 자유유동에서 plume 간섭현상을 조사하기 위하여, 추진노즐로부터 발생하는 강한 부족 팽창제트를 모사하여 종래의 풍동실험의 결과와 비교하였다. 또 수치계산에서는 미사일 후미부에 Simple, Rounded, 다공-확장(porous-extension)벽을 적용하여, 이들이 plume 간섭현상에 미치는 영향을 조사하였다. 그 결과 Rounded, 다공-확장(porous-extension)벽은 plume에 의한 충격파와 경계층 유동의 박리 현상을 완화시킬 수 있었으며, 미사일 동체의 제어성능을 향상시킬 수 있음을 알았다.

  • PDF

Plume Interference Effects on the Missile with a Simplified Afterbody at Transonic$^{}$ersonic Speeds

  • Kim, H. S.;Kim, H. D.;Lee, Y. K.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제18회 학술발표대회 논문초록집
    • /
    • pp.41-42
    • /
    • 2002
  • The powered missiles with very high thrust level can make highly underexpanded jet plume downstream of tile exhaust nozzle exit so that strong interactions between the exhaust plume and a free stream occur around the body at transonic or supersonic speeds. The interactions result in extremely complicated flow phenomena, which consist of plume-induced boundary layer separation, strong shear layers, various shock waves, and interactions among these. The flow characteristics are inherent nonlinear and severe unstable during the flight at its normal speed as well as taking-off and landing. Eventually, the induced boundary layer separation and pitching and yawing moments by the interactions cause undesirable effects ell the static stability and control of a missile.

  • PDF

지하수류가 대수층 열저장 시스템의 성능에 미치는 영향(3) (The Influence of Groundwater Flow on the Performance of an Aquifer Thermal Energy Storage (ATES) System)

  • 한정상;이주현;김영식;이광진;홍경식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권4호
    • /
    • pp.9-26
    • /
    • 2017
  • When a warm well located downgradient is captured by cold thermal plume originated from an upgradient cold well, the warm thermal plume is pushed further downgradient in the direction of groundwater flow. If groundwater flow direction is parallel to an aquifer thermal energy storage (ATES), the warm well can no longer be utilized as a heat source during the winter season because of the reduced heat capacity of the warm groundwater. It has been found that when the specific discharge is increased by $1{\times}10^{-7}m/s$ in this situation, the performance of ATES is decreased by approximately 2.9% in the warm thermal plume, and approximately 6.5% in the cold thermal plume. An increase of the specific discharge in a permeable hydrogeothermal system with a relatively large hydraulic gradient creates serious thermal interferences between warm and cold thermal plumes. Therefore, an area comprising a permeable aquifer system with large hydraulic gradient should not be used for ATES site. In case of ATES located perpendicular to groundwater flow, when the specific discharge is increased by $1{\times}10^{-7}m/s$ in the warm thermal plume, the performance of ATES is decreased by about 2.5%. This is 13.8% less reduced performance than the parallel case, indicating that an increase of groundwater flow tends to decrease the thermal interference between cold and warm wells. The system performance of ATES that is perpendicular to groundwater flow is much better than that of parallel ATES.

헬리콥터로부터 발사된 로켓의 공력 간섭 현상에 대한 수치적 연구 (NUMERICAL INVESTIGATION OF AERODYNAMIC INTERACTION OF AIR-LAUNCHED ROCKETS FROM A HELICOPTER)

  • 이범석;김유진;강경태;권오준
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.36-41
    • /
    • 2011
  • Numerical simulation of air-launched rockets from a helicopter was conducted to investigate the aerodynamic interference between air-launched rocket and helicopter. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between rocket and rocket launcher. The flow solver was coupled with six degree-of-freedom equation to predict the trajectory of free-flight rockets. For the validation, calculations were made for the impinging jet with inclined plate. The rotor downwash of helicopter was calculated and applied to simulation of air-launched rocket. It is shown that the rotor downwash has non-negligible effect on the air-launched rocket and its plume development.

등온 수직 평판에서의 혼합대류 열전달 (Mixed convection from two isothermal, vertical, parallel plates)

  • 박문길;이재신;양성환;권순석
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1645-1651
    • /
    • 1990
  • 본 연구에서는 두 개의 수직 등온 평판이 평행하게 배열된 경우의 혼합대류 열전달에 대하여 무차원 평판 간격, b/l와 Grashof수, 레이놀즈수를 변수로 유한차분 법을 사용 수치해석하고, 두평판사잉의 간섭현상과 열전달을 최대로 하는 최적 평판간 격을 구하였다.

분무패턴 분석을 이용한 가솔린 직접 분사식 인젝터의 개별 분무플럼 분무각 측정 방법에 대한 연구 (A Study on the Measurement of Individual Spray Cone Angle from Gasoline Direct Injection Injector using Spray Pattern Analysis)

  • 박정현;조한빈;박수한
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study is to propose and compare methods for measuring individual spray cone angles using spray cross-section images. In direct injection gasoline engines, it was believed that the distribution of air-fuel mixture in the combustion chamber directly affected combustion performance and emission formation. However, since gasoline direct injection (GDI) injectors have a small injection angle, interference between individual spray plumes occurs. Therefore, GDI injectors have only measured the spray angle of the entire spray. To overcome these limitations, three methods of indirectly measuring the spray cone angles of individual spray plume were presented and compared by forming sheet beams using Nd:YAG laser and acquiring spray cross-section images. Each method currently has advantages and disadvantages, and research to apply the method suitable for various GDI injectors needs to be continued.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권3호
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.