• Title/Summary/Keyword: Plastic Insert

Search Result 58, Processing Time 0.028 seconds

A Study on the Stress Concentration Phenomenon of a Dissimilar Joints (이종재 접합부에서의 응력집중현상에 관한 연구)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

Effect of lipoaspirate cell autograft on proliferation and collagen synthesis of diabetic fibroblasts in vitro (지방기질세포 치료가 당뇨섬유아세포의 증식과 교원질합성에 미치는 영향)

  • Song, Sun Ho;Han, Seung Kyu;Chun, Kyung Wook;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.36 no.6
    • /
    • pp.679-684
    • /
    • 2009
  • Purpose: Human lipoaspirate cells are relatively easy to obtain in large quantities without cell culture. The aim of this in vitro pilot study was to determine the effect of cell therapy using uncultured lipoaspirate cells on cell proliferation and collagen synthesis of diabetic fibroblasts, which are the major contributing factors in wound healing. Methods: In order to get diabetic fibroblasts, dermis tissues were obtained from foot skin of diabetic patients who underwent debridements or toe amputations(n = 4). In order to isolate lipoaspirate cells, the same diabetic patients' abdominal adipose tissues were obtained by liposuction. The diabetic fibroblasts were co - cultured with or without autogenous lipoaspirate cells using porous culture plate insert. Initial numbers of the lipoaspirate cells and diabetic fibroblasts seeded were 15,000 cells/well, respectively. For cell proliferation assay, two treatment groups were included. In group I, diabetic fibroblasts were cultured with the insert having no cells, which serves as a control. In group II, the lipoaspirate cells were added in the culture plate insert. For collagen synthesis assay, one additional group(group III), in which diabetic fibroblasts were not seeded in the well and only lipoaspirate cells inside the insert were incubated without diabetic fibroblasts, was included for a reference. Results: One hundred to one hundred sixty thousand lipoaspirate cells were isolated per ml of aspirated adipose tissue. After 3 - day incubation, the mean cell numbers in group I and II were 17,294/well and 22,163/well. The mean collagen level in group I, II, and III were 29, 41, and 2 ng/ml, respectively. These results imply that both cell proliferation and collagen synthesis in the lipoaspirate cell treatment group were 28 and 44 percents higher than in the control group, respectively(p < 0.05). Conclusion: Uncultured lipoaspirate cell autografts may stimulate the wound healing activity of diabetic fibroblasts.

Development of Film Fixing System for Improving Overlap Defects in the Film Insert Injection Molding Process (필름 인서트 사출성형 공정의 오버랩 불량 개선을 위한 필름 고정 시스템 개발)

  • Kim, Jung-Ho;Mun, Ji-Hun;Park, Hong-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • We carried out research into an environmentally friendly injection molding process that involves filling the mold with polymer after thin films are fixed into the cavity, without the coating, plating process. Film insert injection molding is a new technique in which molten plastic resin is injected into the cavity after films are precisely attached to the side of the mold wall. In the film insert injection molding process, the insert film is moved by the flow of the molten plastic resin. Overlap defects cause a decline in the productivity and the quality of the manufactured goods. To reduce overlap defects, new injection mold parts are proposed to produce automotive exterior parts using thin films. It is suggested that the best possible method would be to fix the thin films to one side of the mold wall, and develop interior pins to fix the films in the mold. Based on this new pin fixing system, the problem of the film being moved by the flow of the molten resin was improved.

A study on the molding of dome shaped plastic parts embedded with electronic circuits (전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

Numerical Analysis of the Filling Stage in Insert Injection Molding of Microfluidic Chip with Metal Electrodes (금속 전극을 포함한 미세유체 칩의 인서트 사출성형 충전 공정 해석)

  • Lee, Bong-Kee;Na, Seung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.969-976
    • /
    • 2015
  • In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.

A Study on Insert Injection Molding for BLDC Motor Stator (BLDC 모터 고정자의 인서트 사출 성형에 관한 연구)

  • Choi, Du-Soon;Kim, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5737-5742
    • /
    • 2015
  • Insert injection molding is a process in which molten plastic is injected into a mold that contains a pre-placed insert. During the injection stage, the insert can be deformed by the pressure applied by the polymer melts. The deformation of the insert changes the width of the flow path around the insert, which can cause several defects such as short shots or warpages of the parts. In order to reduce the deformation of the insert, it is important to achieve successful design of gating system, insert geometry, and molding conditions. In the present study, the insert deformations that occured during the injection molding of the BLDC motor stator were investigated by numerical analyses. The gate location and the insert shape were modified to reduce the insert deformation. Finally, the injection molding with the modified designs was carried out, and it was confirmed that the insert deformation was reduced.

Effects of Insert Materials of Retaining Ring on Polishing Finish in Oxide CMP (산화막 CMP에서 리테이닝 링의 인서트 재질이 연마정밀도에 미치는 영향)

  • Park, Ki-Won;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.44-50
    • /
    • 2019
  • CMP is the most critical process in the manufacture of silicon wafers, and the use of retaining rings, which are consumable parts used in CMP equipment, is increasingly important. Since the retaining ring is made of plastic, it is not only weak in strength but also has the problem of taking a long time for the flattening operation of the ring itself performed before the CMP process, and of the imbalance of force due to bolt tightening causing uneven wear. In order to solve this problem, the retaining ring and the insert ring are integrally used, and the flatness of the retaining ring may be affected depending on the material of the insert ring. Also, the residual stress generated in the manufacturing process of the insert ring may cause distortion of the ring, which may adversely affect the precision polishing. In this study, when the insert ring is made of Zn or STS304, the thickness variation and the flatness of the retaining ring are compared and, finally, the material removal rate is analyzed by polishing the wafer by the oxide CMP process. Through these experiments, the effects of the insert ring material on the polishing accuracy of the wafers were investigated.

Stress Analysis of the Prestressed Dies by Using FEM (유한요소법을 이용한 예압된 금형의 응력해석)

  • Yeo, Hong-Tae;Choi, Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 1999
  • By using the FEM, a method for the stress analysis of the presented dies has been proposed. In this method, FEM and Lame equation are used for the analysis of the die insert and the stress ring, respectively. The proposed method includes the calculation of the contact pressure between the die insert and the stress ring. To show the validity, the proposed method has been applied to the simple test problem. The results of the stress analysis have been compared with the results of ANSYS, a commercial FE-code. Cold extrusion has been simulated by using the rigid-plastic FEM and the results of the deformation analysis have been used as the input of the die structure analysis. The stress states of the prestressed extrusion die have been obtained. The stress analysis of the die insert with stress rings has also been performed during extrusion.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.