• Title/Summary/Keyword: Plasma Sensor

Search Result 175, Processing Time 0.022 seconds

Deposition and Analysis of Fluorinated Amorphous Carbon Thin Films by PECVD (PECVD에 의한 비정질 불화탄소막의 증착 및 특성분석)

  • Kim, Ho-Woon;Shin, Jang-Kyoo;Kwon, Dae-Hyuk;Seo, Hwa-Il
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.182-187
    • /
    • 2004
  • The fluorinated amorphous carbon thin films (a-C:F) were deposited by PECVD(plasma enhanced chemical vapor deposition). The precursors were $C_{4}F_{8}$ which had a similar ratio of target film's carbon to fluorine ratio, and $Si_{2}H_{6}$/He for capturing excessive fluorine ion. We varied deposition condition of temperature and working pressure to survey the effect of each changes. We measured dielectric constant, composition, and etc. At low temperature the film adhesion to substrate was very poor although the growth rate was very high, the growth rate was very low at high temperature. The EDS(energy dispersive spectroscopy) result showed carbon and fluorine peak for films and Si peak for substrate. There was no oxygen peak.

Mobility Determination of Thin Film a-Si:H and poly-Si

  • Jung, S.M.;Choi, Y.S.;Yi, J.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.483-490
    • /
    • 1997
  • Thin film Si has been used in sensors, radiation detectors, and solar cells. The carrier mobility of thin film Si influences the device behavior through its frequency response or time response. Since poly-Si shows the higher mobility value, a-Si:H films on Mo substrate were subjected to various crystallization treatments. Consequently, we need to find an appropriate method in mobility measurement before and after the anneal treatment. This paper investigates the carrier mobility improvement with anneal treatments and summarizes the mobility measurement methods of the a-Si:H and poly-Si film. Various techniques were investigated for the mobility determination such as Hall mobility, HS, TOF, SCLC, TFT, and TCO method. We learned that TFT and TCO method are suitable for the mobility determination of a-Si:H and poly-Si film. The measured mobility was improved by $2{\sim}3$ orders after high temperature anneal above $700^{\circ}C$ and grain boundary passivation using an RF plasma rehydrogenation.

  • PDF

A Study on the Determination of Palladium in $SnO_2$ by ICP-AES (유도결합 플라즈마 원자 방출 분광법에 의한 $SnO_2$ 중의 Palladium 정량)

  • Sun Tae Kim;Kyoung Jin Min;Young Hee Lee;Je Ahn Park;Beom Suk Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.243-247
    • /
    • 1992
  • Inductively coupled plasma-atomic emission spectrometry was applied to determine the palladium in $SnO_2$ employed for a gas sensor. Since $SnO_2$ is hardly decomposed into the solution, extensive studies were devoted to the development of decomposition methods which minimize the interference effect. The matrix effects on the background level and emission intensity of the element were studied and they were compensated by using matrix matched solution.

  • PDF

Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module

  • Lee, Hyung-Kun;Choi, Nak-Jin;Jung, Sun-Kyung;Park, Kang-Ho;Jung, He-Won;Shim, Jae-Kyu;Ryu, Jae-Wook;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.695-702
    • /
    • 2009
  • We propose a lens-drive unit composed of an ionic polymer-metal composite (IPMC) for an auto-focus compact camera module in cellular phones to solve the power consumption problem of voice coil motors which are widely used in commercial products. In this research, an IPMC incorporated into a lens-drive unit is designed to implement a large displacement in low-power consumption by using an anisotropic plasma treatment. Experimental results show that a camera module containing IPMCs can control and maintain the position of the lens by using proportional integral derivative control with a photo-reflective position sensor despite the non-linear actuation behavior of IPMCs. We demonstrate that the fabrication and commercialization of a lens actuator that has a large displacement and low power consumption using IPMCs is possible in the near future.

Production of Laser Welded Tube for Automobile Bumper Beam from 60kgf/$\textrm{mm}^2$Grade Steel Sheet (60kgf/$\textrm{mm}^2$급 자동차 범퍼빔용 레이저 용접 튜브 제조기술 및 장치연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jong-Soo;Kim, Jung-O;Kang, Hee-Sin;Lee, Moon-Yong;Jung, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.136-144
    • /
    • 2004
  • Optimal process and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from a cold rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

Defect Detection in Laser Welding Using Multidimensional Discretization and Event-Codification (Multidimensional Discretization과 Event-Codification 기법을 이용한 레이저 용접 불량 검출)

  • Baek, Su Jeong;Oh, Rocku;Kim, Duck Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.989-995
    • /
    • 2015
  • In the literature, various stochastic anomaly detection methods, such as limit checking and PCA-based approaches, have been applied to weld defect detection. However, it is still a challenge to identify meaningful defect patterns from very limited sensor signals of laser welding, characterized by intermittent, discontinuous, very short, and non-stationary random signals. In order to effectively analyze the physical characteristics of laser weld signals: plasma intensity, weld pool temperature, and back reflection, we first transform the raw data of laser weld signals into the form of event logs. This is done by multidimensional discretization and event-codification, after which the event logs are decoded to extract weld defect patterns by $Na{\ddot{i}}ve$ Bayes classifier. The performance of the proposed method is examined in comparison with the commercial solution of PRECITEC's LWM$^{TM}$ and the most recent PCA-based detection method. The results show higher performance of the proposed method in terms of sensitivity (1.00) and specificity (0.98).

Fabrication and evaluation of hydrophobic metal stent using electron beam equipment (전자빔 처리를 통한 발수성 금속 스텐트 제작 및 평가)

  • Kim, Jisoo;Park, Jongsung
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.165-169
    • /
    • 2021
  • The objective of this study was to fabricate a novel hydrophobic stent for reducing restenosis by employing electron beam equipment. The stent was fabricated from a CoCr alloy tube by using a femtosecond laser and was treated with argon plasma. Subsequently, the stent's surface specification changed from hydrophilic to hydrophobic. Application of the electron beam offers several advantages such as a short processing time, whole surface reforming, and enhancement of material properties. As the surface of the stent was rendered hydrophobic, it can provide equivalent or enhanced mechanical properties and greater functionality with a higher radial force at the extended stent in a blood vessel. The obtained results corresponding to the mechanical properties indicate that the contact angle increased to approximately 130°, and the radial force increased to approximately 3 N. Furthermore, cell culture experiments were conducted for verifying whether cells were cultured on the surface-modified CoCr surface. Based on the obtained results, it is believed that an effective reduction in the restenosis of inserted vascular stents is possible.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

LONGITUDINAL AND SEASONAL VARIATIONS OF THE ELECTRON TEMPERATURE AND DENSITY IN THE LOW_LATITUDE TOPSIDE IONOSPHERE OBSERVED BY KOMPSAT-1 (다목적 실용위성 1호로 측정한 저위도 상부 이온층의 전자 온도와 전자 밀도의 경도 및 계절별 변화)

  • Kim, Hee-jun;Park, Sun-Mie;Lee, Jae-Jin;Lee, En-sang;Min, Kyoung-Wook;Han, Won-yong;Nam, Uk-Won;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2002
  • The electron density and temperature in the topside ionosphere are observed by the ionosphere Measurement Sensor (IMS) onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of $98^{\circ}$ with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT) behavior on magnetically quiet days (Kp < 4) has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.

Fabrication of ${\gamma}-Fe_2O_3$ Thin Film for Chemical Sensor Application (화학센서용 다공성 ${\gamma}-Fe_2O_3$ 박막 제조)

  • Kim, Bum-Jin;Lim, Il-Sung;Jang, Gun-Eik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.171-176
    • /
    • 1999
  • ${\gamma}-Fe_2O_3$ thin films on $Al_2O_3$ substrate were prepared by the oxidation of $Fe_3O_4$ thin films processed by PECVD(Plasma-Enhanced Chemical Vapor Deposition) technique. The phase transformation of ${\gamma}-Fe_2O_3$ thin films was mainly controlled by the substrate temperature and oxidation process of $Fe_3O_4$ phase. $Fe_3O_4$ phase was obtained at the deposition temperature of $200{\sim}300^{\circ}C$. $Fe_3O_4$ phase could be transformed into ${\gamma}-Fe_2O_3$ phase under controlled oxidation at $280{\sim}300^{\circ}C$. $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ obtained by oxidation of $Fe_3O_4$ phase had the same spinel structure and were coexisted. The oxidized ${\gamma}-Fe_2O_3$ thin film on $Al_2O_3$ substrate showed a porous island structure.

  • PDF