• 제목/요약/키워드: Photovoltaic performance analysis

검색결과 223건 처리시간 0.024초

해석모델을 이용한 태양광모듈의 성능결과 비교분석 (Comparison Results of Photovoltaic Module Performance using Simulation Model)

  • 소정훈;유병규;황혜미;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

PV모듈 모델링에 의한 성능모의 결과비교 (Performance Simulation Results for Photovoltaic Module Modeling)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1988-1993
    • /
    • 2008
  • Photovoltaic (PV) modules operate over a large range of conditions but manufacturer's information is not sufficient to determine their overall performance. Designers need a reliable tool to predict energy production from a photovoltaic module under all conditions in order to make a sound decision. The modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of PV modules modeling by comparing measured with simulated value.

50kW급 계통연계형 태양광발전시스템의 성능모니터링 결과 및 평가분석 (Performance Monitoring Results, Evaluation and Analysis of 50kW Grid-Connected PV System)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제27권2호
    • /
    • pp.29-35
    • /
    • 2007
  • Monitoring system is constructed for evaluating and analyzing performance of installed 50kW grid-connected PV system and have been monitored since October 2005. As climatic and irradiation conditions have been varied through long-term operation, there is necessity for evaluating numerical values of PV(Photovoltaic) system performance to observe the overall effect of environmental conditions on their operation characteristics. This paper presents performance monitoring results and analysis on component perspective(PV array and power conditioning system) and global perspective(yield, losses) of PV system for one year monitoring periods.

추적식 수상 태양광 발전 시스템 성능 분석 (The Efficiency Analysis of Tracking-Type Floating PV System)

  • 양연원;정선옥;신현우;이길송
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

기상 환경 모니터링 데이터를 이용한 태양광발전시스템 발전량 성능 분석 (Photovoltaic System Energy Performance Analysis Using Meteorological Monitoring Data)

  • 권오현;이경수
    • 한국태양에너지학회 논문집
    • /
    • 제38권4호
    • /
    • pp.11-31
    • /
    • 2018
  • Nowadays, domestic photovoltaic system market has been expanded and the governmental dissemination policy has been continued. There is only PV system output performance analysis which is called Performance Ratio(PR) analysis. However, there exists many parameters that can affect PV system output. This papers shows the PV system energy performance analysis using meteorological monitoring data. The meteorological monitoring system was installed in the H university and we analyzed the PV system which installed in the H university. We also investigated other three PV systems which located less than 3 kilometers from H university. We evaluated total 4 PV systems through the field survey data, design drawing data and power generation data. Finally, we compared the actual measuring data with the simulation data using PVSYST software.

A Study on the Performance Analysis of Photovoltaic System with Digital Surge Detection device

  • Byeong-Ho Jeong;Ju-Hoon Park
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.376-387
    • /
    • 2024
  • This paper examines the performance improvement of a photovoltaic power generation system with a surge protection function by applying a digital surge detection device for surge suppression in a direct current distribution panel applied to a photovoltaic power generation system. The main components used for surge protection are mainly SAD, MOV, and GTA components, and a digital surge detection device was additionally applied to this. Each component has advantages and disadvantages in terms of performance and functionality for surge protection, so a surge protection device with meaningful performance and functionality must be designed in a complex device structure that harmonizes the advantages and disadvantages of each component in order to construct a surge protection device with meaningful performance and function. Through empirical experiments, a performance analysis of a complex surge detection device to which a digital surge detection device is applied was conducted. As a result of the experiment, through absorption and blocking of surges detected through a digital surge detection device, it has both absorption and blocking performance for surges and exhibits surge absorption characteristics for hundreds of voltages in micro second. This performance showed a relatively stable state against surge noise compared to conventional devices, which produced an output waveform of stable quality in the inverter output waveform.

Sensitive analysis of design factor for the optimum design of PVT system

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.5-11
    • /
    • 2015
  • Purpose: Recently, renewable energy system has been widely used to reduce the energy consumption and CO2 emission of building. A photovoltaic/thermal(PVT) system is a kind of efficient energy uses, which is combined with photovoltaic module and solar thermal collector. PVT system removes heat from PV module by through thermal fluid to raise the performance efficiency of the PV system. However, though PVT system has the merit of the improved efficiency in theoretical approach, there have been few performance analysis for PVT system using the dynamic energy simulation. In this study, in order to establish the optimum design method of this system, simulation was conducted by using individual system modules. Method: For the dynamic simulation, TRNSYS17 was used and local weather data was utilized. Furthermore, the system performance in various installation condition was calculated by case studies. Result: As a result, the amount of electric generation and heat production in each case was found by the simulation. The gap of system performance was also evident according to the installation condition.

태양광발전시스템의 장기운전에 의한 성능변화 분석 (Performance Analysis of long term operation for photovoltaic system)

  • 김의환;김정삼
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.110.1-110.1
    • /
    • 2011
  • This study analyzed the performance of long term operation photovoltaic system The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 12 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 38.0 MWh in 2010. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 8.8% in 2011. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 12 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

  • PDF

12kW급 건물일체형 태양광발전시스템 사례분석 (Case Study on 12kW Building Integrated Photovoltaic System)

  • 박경은;강기환;김현일;소정훈;유권종;김준태;이길송
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

건물일체형 태양광발전 시스템 성능평가 프로그램 개발 (The Development of Performance Evaluation Program of Building Integrated Photovoltaic System)

  • 김법전;박재완;윤종호;신우철
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: In design and planning Building Integrated Photovoltaic(BIPV) system can reduce cost by replacing building facade as construction material such as roofs, outer walls and windows as well as generating electricity. BIPV system should be applied at the early stage of architectural design. However, it is hard to decide whether using BIPV system or not for architects and builders who are not professional at BIPV system because performance of system is considerably influenced by types of module, installation position, installation methods and so on. It is also hard for experts because commercialized analytical program of photovoltaic systems is too complicated to use and domestic meteorological data is limited to partial areas. Therefore, we need evaluation program of BIPV system which can easily but accurately interpret generating performance and evaluate validity of BIPV system at the early stage of architectural design even for inexpert. Method: In this study, we collected meteorological data of domestic major region and analyzed generation characteristic of BIPV system by using PVsyst(commercialized software) in accordance with regions, types of solar module, place and methods of installation and so on. Based on this data, we developed performance evaluation program of BIPV system named BIPV-Pro, through multiple regression analysis and evaluated its validity. Result: When comparing predictive value of annual average PR and annual electricity production of BIPV-Pro an that of PVsyst, each of root mean square error was 0.01897 and 123.9.