• 제목/요약/키워드: Phantoms, Imaging

검색결과 112건 처리시간 0.025초

COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Nuclear Engineering and Technology
    • /
    • 제38권3호
    • /
    • pp.239-250
    • /
    • 2006
  • Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

Characteristics of Magnetic Resonance-Based Attenuation Correction Map on Phantom Study in Positron Emission Tomography/Magnetic Resonance Imaging System

  • Hong, Cheolpyo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.189-193
    • /
    • 2020
  • An MR-based attenuation correction (MRAC) map plays an important role in quantitative positron emission tomography (PET) image evaluation in PET/magnetic resonance imaging (MRI) systems. However, the MRAC map is affected by the magnetic field inhomogeneity of MRIs. This study aims to evaluate the characteristics of MRAC maps of physical phantoms on PET/MRI images. Phantom measurements were performed using the Siemens Biograph mMR. The modular type physical phantoms that provide assembly versatility for phantom construction were scanned in a four-channel Body Matrix coil. The MRAC map was generated using the two-point Dixon-based segmentation method for whole-body imaging. The modular phantoms were scanned in compact and non-compact assembly configurations. In addition, the phantoms were scanned repeatedly to generate MRAC maps. The acquired MRAC maps show differently assigned values for void areas. An incorrect assignment of a void area was shown on a locally compact space between phantoms. The assigned MRAC values were distorted using a wide field-of-view (FOV). The MRAC values also differed after repeated scans. However, the erroneous MRAC values appeared outside of phantom, except for a large FOV. The MRAC map of the phantom was affected by phantom configuration and the number of scans. A quantitative study using a phantom in a PET/MRI system should be performed after evaluation of the MRAC map characteristics.

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.

Verification of Microstructure Qualities of ACR-Approved Mammography Phantoms by Refraction-Enhanced Synchrotron Radiation Imaging

  • Imamura, Keiko;Ehara, Norishige;Inada, Yoichi;Miyamoto, Keiko;Kanemaki, Yoshihide;Umetani, Keiji;Uesugi, Kentaro;Ochiai, Yoshinori;Fukuda, Mamoru;Nakajima, Yasuo
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.415-417
    • /
    • 2002
  • Images of microcalcification specks showed large variation in conventional radiographs of phantoms which are approved for mammography image quality standard by the American College of Radiology (ACR). This kind of variation is not appropriate for image quality standards because the number of specks are visually counted in images and that number is important in image quality evaluation. Our study using synchrotron radiation (SR) imaging revealed the overlapping of micro-sized air bubble(s) to some specks, and also the structural deformation or crackings. Eight phantoms approved by ACR from two different makers and an air-bubble phantom were examined. SR imaging was performed at a synchrotron radiation facility, SPring-8, in Japan. The image-detector was a fluorescent-screen optical-lens coupling system using a CCD camera with a spatial resolution of 6 $\square$m. Objects when imaged with longer sample-to-detector distance show edge enhancement due to a difference in refraction indices, that is refraction enhancement. Refraction-enhanced SR images revealed that some of specks carried foreign objects, which were proven to be air. In phantoms provided by one maker, attaching/overlapping airs were observed for 62 out of 150 specks (41%) , with a higher incidence for the smallest specks. A speck becomes hardly visible in a conventional radiograph when air(s) overlaps the majority part of a speck, though depending on the size of the air-inclusion and on its configuration. Those airs might have been adsorbed on a speck surface before being embedded and then introduced into the matrix together with specks. Our study using SR imaging has clearly shown the nature of defects in some mammography phantoms which seriously degrade the quality as an image standard.

  • PDF

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • 제35권2호
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

초음파 영상용 플라스틱 기반의 팬텀제작 및 특성 분석 (Analysis of Properties and Phantom Design Based on Plastic Hardener and Softener for Ultrasonic Imaging)

  • 이균정;박동희;신태민;서종범
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권4호
    • /
    • pp.302-306
    • /
    • 2008
  • Plastic hardener and softener based ultrasound phantoms were made in various constitutions and their acoustic properties were measured. Speed of sound is approximately $1.4\;mm/{\mu}sec$ in all the phantoms, which is about 7% less than that of in soft tissue. Attenuation coefficient is strongly dependent on the ratio between hardener and softener. In order to achieve the tissue level attenuation (0.5 dB/cm/MHz), 60% of hardener or less is required. The synthesized phantoms can be preserved for more than 6 months without structural degradation.

Impact of dental imaging on pregnant women and recommendations for fetal radiation safety: A systematic review

  • Thiago Oliveira Gamba;Fernanda Visioli;Deise Renata Bringmann;Pantelis Varvaki Rados;Heraldo Luis Dias da Silveira;Isadora Luana Flores
    • Imaging Science in Dentistry
    • /
    • 제54권1호
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: This study was conducted to investigate the safety of dental imaging in pregnant women with respect to fetal health. Materials and Methods: Searches were conducted of the PubMed, Scopus, and Web of Science databases in May 2023. The inclusion criteria encompassed cross-sectional and longitudinal studies that focused on the analysis of diagnostic dental imaging in pregnant women, as well as studies utilizing phantoms to simulate imaging examinations. The exclusion criteria consisted of reviews, letters to the editor, book chapters, and abstracts from scientific conferences and seminars. Results: A total of 3,913 articles were identified. Based on a review of the titles and abstracts, 3,892 articles were excluded, leaving 21 articles remaining for full-text review. Of these, 18 were excluded, and 4 additional articles were included as cross-references. Ultimately, 7 articles underwent quantitative-qualitative analysis. Three retrospective studies were focused on pregnant women who underwent dental imaging procedures. The remaining 4 studies utilized female phantoms to simulate imaging examinations and represent the radiation doses absorbed by the uterus or thyroid. Conclusion: Few dental radiology studies have been conducted to determine the safe radiation threshold for pregnant women. Additionally, the reviewed articles did not provide numbers of dental examinations, by type, corresponding to this dose. Dental imaging examinations of pregnant women should not be restricted if clinically indicated. Ultimately, practitioners must be able to justify the examination and should adhere to the "as low as diagnostically acceptable, being indication-oriented and patient-specific" (ALADAIP) principle of radioprotection.

전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구 (An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery)

  • 유병규;정태섭
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제25권1호
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF

영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구 (A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education)

  • 성열훈
    • 한국방사선학회논문지
    • /
    • 제12권1호
    • /
    • pp.71-78
    • /
    • 2018
  • 본 연구에서는 인체 모사 조형물을 3차원 프린팅으로 출력한 사례를 보고하고자 하였다. 재료는 용융적층방식의 개인용 3차원 프린터 장비와 폴리락트산을 소재로 사용하였다. 3차원 인체 모사 조형물 출력은 모델링하는 단계, 평면화 작업과 G-code 변환 단계,출력변수 설정 단계, 3D 출력단계, 마지막으로 후처리 단계 순으로 진행하였으며, 학생들의 학습만족도(해부학인지도, 수업흥미도)를 리커트 5 점 척도로 조사하였다. 그 결과, 총 20가지의 3차원 인체 모사 조형물을 성공적으로 출력하였다. 총 출력소요시간은 11,691분(194시간 85분)이었으며 평균 출력소요시간은 584.55분(9시간 7분)이었다. 이에 소요된 필라멘트량은 총 2,390.2 g 이었으며 평균 119.51 g 이 소요되었다. 학습만족도의 해부학인지도는 평균 4.6 점, 수업흥미도는 평균 4.5 점으로 높은 것으로 나타났다. 앞으로 3차원 프린팅 기술은 영상해부학 교육의 학습효과를 높여줄 수 있으리라 기대한다.

모사 지방간 팬텀을 활용한 초음파영상에서 지방간 정량화 진단 기술 개발을 위한 연구 (A Study of the Development for Fatty Liver Quantification Diagnostic Technology from Ultrasound Images using a Simulated Fatty Liver Phantom)

  • 임예지;유승만
    • 한국방사선학회논문지
    • /
    • 제18권2호
    • /
    • pp.135-144
    • /
    • 2024
  • 초음파 영상 검사는 지방간 정량화에 제한점을 가지고 있다. 이에 본 연구에서는 가상 지방간 팬텀을 통해 지방간 함량을 초음파 주행 과정에서의 신호 감쇠 변화가 정량화가 가능한지를 실험적으로 입증하고자 하고자 하였다. 또한 초음파 영상에서의 지방 함량과 신호 강도의 관계를 분석하여 초음파를 통한 지방간 진단에 대한 가능성을 평가하고자 하였다. 본 연구에서는 물과 기름을 균질하게 혼합하여 총 5개의 가상 지방간 팬텀을 개발했다. 자기공명영상과 초음파 영상을 사용하여 팬텀의 지방 함량을 확인하고 초음파 영상에서 거리에 따른 신호 강도를 측정하였다. 이후 지방 함량과 신호 강도 간의 상관관계를 분석과 평균비교를 수행하였다. 초음파 영상에서는 지방의 함량이 높아짐에 따라 초음파의 투과 강도가 감소하는 현상을 확인하였으며, 이를 통해 초음파를 사용하여 지방간의 함량을 정량화할 가능성을 확인하였다. 또한 자기공명영상으로 측정한 지방 함량과 초음파 영상에서 측정한 신호 강도 간 높은 상관관계를 보였다. 본 연구에서는 지방의 함량이 높아질수록 초음파 영상의 초음파 주행 과정에서 신호를 표현한 기울기(US-GRE)값이 점점 작아지는 것을 통계적으로 확인하였으며 US-GRE는 지방간 함량을 표현하는 생체 마커(biomarker)로서 역할을 할 수 있을 것으로 판단된다.