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The exciting advancement related to the “modeling of digital human” in terms of a computa-
tional phantom for radiation dose calculations has to do with the latest hype related to deep 
learning. The advent of deep learning or artificial intelligence (AI) technology involving convo-
lutional neural networks has brought an unprecedented level of innovation to the field of organ 
segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both 
real-time Monte Carlo simulations and AI-based image segmentation applications. These ad-
vancements provide the feasibility of creating three-dimensional (3D) geometric details of the 
human anatomy from tomographic imaging and performing Monte Carlo radiation transport 
simulations using increasingly fast and inexpensive computers. This review first introduces the 
history of three types of computational human phantoms: stylized medical internal radiation 
dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation 
(BREP) deformable phantoms. Then, the development of a person-specific phantom is demon-
strated by introducing AI-based organ autosegmentation technology. Next, a new development 
in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying 
computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radia-
tion-transport Computations in Heterogeneous EnviRonments) to problems in radiation pro-
tection, imaging, and radiotherapy are presented from research projects performed by students 
at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China 
(USTC). Finally, this review discusses challenges and future research opportunities. We found 
that, owing to the latest computer hardware and AI technology, computational human body 
models are moving closer to real human anatomy structures for accurate radiation dose calcula-
tions.

Keywords: Computational Phantoms, Monte Carlo, Graphics Processing Units, Deep Learn-
ing, Autosegmentation
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Introduction

The so-called “deep learning,” cashing in on long-time research in the field of ma-

chine learning, is expectedly affecting medical imaging and radiological sciences. The 

“modeling of digital human” in terms of a computational phantom for radiation dose 

calculations has experienced a large increase in activity in the past two decades, per-

haps aided by the latest hype related to deep learning. Radiation dosimetry involves 

the determination of the amount and distribution pattern of ionizing energy deposited 

in a material. It is challenging to achieve accurate radiation dosimetry for the following 
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reasons [1]: (1) exposure scenarios are diverse and often in-

clude a complex and unique geometrical relationship be-

tween the source and the human body; (2) an exposure can 

involve multiple radiation types, and different types of radia-

tion transverse the human body and interact with tissues ac-

cording to different radiation physics principles; and (3) the 

human body consists of a very large number of anatomical 

structures that are heterogeneous in density and composi-

tion. The last point emphasizes the importance of anatomi-

cal models in radiation dosimetry because the dose inside a 

living person is difficult to measure directly. Instead, compu-

tational or physical phantoms must be used to estimate the 

dose delivered to a worker or patient exposed to ionizing ra-

diation. Compared to using physical phantoms, computa-

tional approaches are generally advantageous with respect 

to versatility, efficiency, precision, and safety. Furthermore, 

internally distributed radiation sources are best handled by 

computational approaches.

For the past 50 years, researchers have been extremely in-

terested in assessing radiation dosage using computational 

phantoms in the fields of radiation protection, medical im-

aging, and radiotherapy. Health physicists often need to esti-

mate the level of internal and external radiation exposure of 

workers as part of the radiation safety program mandated by 

federal and state regulations. In diagnostic radiology and nu-

clear medicine, the imaging process involving energetic X-

ray and gamma-ray photons must be optimized to achieve 

the necessary level of image quality while minimizing poten-

tially harmful radiobiological effects. Radiation therapy aims 

to deposit lethal doses of radiation to a tumor while prevent-

ing the toxicity of healthy tissues and avoiding the risk of de-

veloping secondary cancer. While the radiological physics 

principles have not changed in the past 60 years, computer 

technologies, especially artificial intelligence (AI) and graph-

ics processing unit (GPU) technologies, have advanced ex-

ponentially, leading to a large unforeseen increase in re-

search activities in the field of anatomical modeling for radi-

ation dosimetry in the past two decades.

Observations and Discussion

1. Phantoms
Due to the advantages mentioned above, computational 

phantoms have been extensively developed by researchers. 

Eckerman et al. [2] identified a total of 121 computational 

phantoms that were developed for ionizing and nonionizing 

radiation dosimetry. Prior to the 1990s, there were fewer 

than 25 such computational phantoms, but this number sur-

prisingly increased to more than 400 [1]. Today, the number 

of computational phantoms may even exceed several thou-

sand. In retrospect, the trend of computational phantom de-

velopment in the past 60 years has clearly mirrored the expo-

nential growth pattern of computer technologies.

In a computational phantom, the explicit definition of the 

surfaces of an organ in which radiation interactions and en-

ergy deposition occur is provided. This definition is similar 

to the solid-geometry modeling methods widely used in 

computer-aided design (CAD). Two general modeling meth-

ods are of interest: (1) constructive solid geometry (CSG) 

and (2) boundary representation (BREP) [3–5].

Over the years, literature reviews have been published that 

focus on a certain period or a particular type of phantom [2, 

6, 7]. To date, the most comprehensive literature review was 

a book edited by Xu and Eckerman [8] that contained contri-

butions by more than 60 authors. More recent information 

on BREP phantoms was provided in a review by Xu [1]. This 

review was the first to analyze the trend in the development 

of approximately 400 computational phantoms over the past 

50 years. Based on chronological and technical information 

in these literature reviews, computational phantoms can be 

classified into three generations in terms of when they were 

introduced: (1) stylized phantoms that are based on quadric 

Fig. 1. Three computational phantom generations: (A) stylized 
phantom, (B) voxel phantom (but displayed as smooth surfaces), 
and (C) BREP phantom. Adapted from Xu [1]. Phys Med Biol. 
2014;59(18):R233-R2302 with the permission of IOP Publishing. 
BREP, boundary representation. 
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equations (from the 1960s to the 1980s); (2) voxel phantoms 

that are based on tomographic images (from the 1980s to 

present); and (3) BREP phantoms that are based on advanced 

primitives and are deformable (from the 2000s to present). 

Fig. 1 compares these generations of computational phan-

toms, which have different levels of geometric sophistication 

and anatomical realism.

1) Stylized phantoms (from the 1960s to the 1980s)

The first-generation anthropomorphic computational 

phantoms were developed to better assess organ doses from 

internally deposited radioactive materials for workers and 

patients [2].

In 1959, the International Commission on Radiological 

Protection (ICRP) used very simple models for the internal 

dosimetry calculations associated with the Report of ICRP 

Committee II [9]. In this approach, the total body was repre-

sented as a sphere with a 30-cm radius. With the gradual in-

crease in computing power from the late 1950s through the 

1960s, the first generation of stylized anthropomorphic 

phantoms was developed at Oak Ridge National Laboratory 

(ORNL) [10]. Using CSG modeling techniques involving 

shapes such as elliptical cylinders and cones, the Fisher-Sny-

der adult phantom was developed.

In 1969, Snyder and his colleagues [11] reported the first 

heterogeneous phantom that became known as the “MIRD-

5 phantom,” a name derived from the Medical Internal Radi-

ation Dosimetry (MIRD) Committee of the Society of Nucle-

ar Medicine (SNM) that adopted the phantom. This phan-

tom consisted of a skeleton, a pair of lungs, and soft tissue. 

The representation of the internal organs is roughly based on 

the mathematical model because simple equations capture 

only the most general description of the position and geom-

etry of each organ. The original model was designed to rep-

resent a healthy “average” adult male, which was referred to 

as Reference Man by the ICRP. The characteristics of Refer-

ence Man were the result of an extensive review of medical 

and other scientific literature on the European and North 

American populations [12]. Reference Man was defined as a 

20- to 30-year-old Caucasian male, 70 kg in weight and 170 

cm in height; the height of Reference Man was later changed 

from 170 cm to 174 cm. In 1978, Snyder [13] published a de-

tailed set of specific absorbed fractions using an improved 

version of their heterogeneous phantom, which contained 

more than 20 organs and more detailed anatomical features.

Significant efforts were undertaken at ORNL during the 

mid-1970s to develop individual pediatric phantoms. Hwang 

et al. [14] designed three “individual phantoms”: a neonatal 

phantom, a 1-year-old phantom, and a 5-year-old phantom. 

A separate effort was undertaken by Jones et al. [15] to devel-

op a 15-year-old phantom, and Deus and Poston [16] under-

took the design of a 10-year-old phantom after completing 

the other four designs. Based on previous work, Cristy [17] 

reported the development of a new series of stylized phan-

toms in 1980 and then collaborated with Eckerman in 1987 

on the report ORNL/TM-8381 [18]. The “family” of this series 

of phantoms included an adult male, a newborn, and indi-

viduals of 1, 5, 10, and 15 years of age; the 15-year-old phan-

tom also represents an adult female when additional ana-

tomical features are added. As shown in Fig. 2, each phan-

tom consists of three main parts: (1) an elliptical cylinder 

representing the trunk and arms; (2) two truncated circular 

cones representing the legs and feet; and (3) an elliptical cyl-

inder that sits on top of the cylinder, and a half ellipsoid that 

sits at the upper end of the elliptical cylinder, which repre-

sents the head and neck, respectively. Attached to the legs is 

a small area with a flat front surface to contain the testes. The 

female phantom included two ellipsoids attached to the tor-

so to represent breasts (not shown in Fig. 2). The arms were 

embedded in the torso. Minor appendages, such as the fin-

gers, feet, chin, and nose, were omitted.

In 1995, Stabin and his colleagues [19] at ORNL adapted 

the phantom of an adult female in this family to represent a 

Fig. 2. The adult male phantom and its dimensions. Similar descrip-
tions and diagrams were purposely followed in a series of ORNL 
technical reports by Snyder [13], Cristy [17], and Cristy and Ecker-
man [18]. Adapted from Xu [1]. Phys Med Biol. 2014;59(18):R233-
R2302 with the permission of IOP Publishing. ORNL, Oak Ridge 
National Laboratory. 
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pregnant woman in the third trimester. Three sets of stylized 

pregnant female phantoms were used in various internal 

nuclear medicine applications.

At the same time that ORNL’s Cristy and Eckerman [18] 

were working to improve the MIRD-5 phantom, a group at 

the National Research Center for Environment and Health 

(GSF) in Germany, which is now known as the German Re-

search Center for Environmental Health (HZM), used the 

anatomical descriptions of the hermaphrodite MIRD-5 

phantom to develop a pair of gender-specific adult phan-

toms, which were later known as ADAM and EVA, for exter-

nal dosimetry studies. The EVA phantom was based on the 

ICRP reference organ quality analysis. All relevant volumes 

of the MIRD-5 phantom were scaled down, and the overall 

mass ratio was 0.83. Then, the female organ masses were 

transformed to create space for neighboring organs. Finally, 

sex-specific organs, such as the testes for ADAM and the ova-

ries, uterus, and breasts for EVA, were implanted. The chin 

was used to create a more realistic external irradiation geom-

etry for the thyroid gland by removing part of the neck. The 

female breasts were connected to the torso of the EVA phan-

tom by two oval sections. There were some subtle differences 

in the anatomy, such as breast size, between EVA and the 

phantom reported by Cristy and Eckerman [18].

During roughly the same period of time, the computation-

al anatomical man (CAM) and computational anatomical 

female (CAF) phantoms were developed by the National 

Aeronautics and Space Administration (NASA) and consist 

of 1,100 unique geometric surfaces and 2,450 solid regions 

[20]. CSG modeling technology was used to explicitly model 

the internal geometric structures of the human body (such 

as organs, cavities, bones, and bone marrow). An analytical 

computer code (not based on Monte Carlo methods) called 

CAMERA was also developed for performing dose calcula-

tions with the CAM and CAF phantoms. Unfortunately, de-

tailed information on the CAM and CAF phantoms was not 

publicly available until the early 2000s [21]. It is interesting to 

note one unique exterior anatomical feature of these phan-

toms: unlike the MIRD-5 phantom, the arms were separated 

from the trunk. Successors to these phantoms were devel-

oped almost simultaneously [1].

Since the publication of the stylized dosimetry model of 

Snyder [13] in the MIRD Pamphlet 5 Revised, the MIRD 

Committee of SNM refined several internal organs to sup-

port the development of radiopharmaceutical tracers and 

therapeutic nuclear medicine. Modifications to the MIRD 

stylized model were published as MIRD Pamphlets, which 

include equations for new geometries, tables for absorbed 

fractions of energy for monoenergetic photons and elec-

trons, and tables for radionuclide S-values. In 1999, the 

MIRD Committee adopted six new head and brain models 

for the following phantoms: newborn, 1-year-old, 5-year-old, 

10-year-old, 15-year-old (which also represents the average 

adult female), and adult male phantoms [22]. Similar to pre-

vious stylized models, simplified geometric shapes were 

used to represent the different regions of the head and brain; 

volumes were derived from published reference masses and 

shapes from the analysis of magnetic resonance imaging 

(MRI) images. Later, the MIRD Committee also adopted a 

series of age-dependent stylized kidney models. These mod-

els have been widely used in therapeutic nuclear medicine 

for the prediction of renal toxicity [23].

The stylized modeling technique was also adopted for 

medical imaging applications. For example, the mathemati-

cal cardiac torso (MCAT) phantom was developed by a re-

search group led by Benjamin Tsui (who is currently with 

Johns Hopkins University) at the University of North Caroli-

na for use in single-photon emission computed tomography 

(SPECT) and positron emission tomography (PET) [24–26]. 

Segars, a member of the group from Johns Hopkins Univer-

sity, later developed more advanced phantoms.

For radiation dosimetry studies, Xu [1] also summarized 

other stylized phantoms, including an embryo phantom and 

a fetus phantom [27], a Korean adult phantom [28], a Japa-

nese 9-month-old phantom [29], a Chinese mathematical 

phantom (CMP) [30], a standard Korean male phantom [31], 

a new mathematical model to simulate the reference male 

bottle mannikin absorber (BOMAB) phantom [32, 33], and a 

converted MIRD-type mathematical phantom in NURBS 

(non-uniform rational B-splines)/voxels [34].

For nearly 50 years after the first stylized phantom was re-

ported, these anatomically simplified phantoms were used 

as the de facto “standard” representations of the ICRP Refer-

ence Man methodology, which is based on “population-av-

erage” 50th-percentile anatomical parameters specified in 

ICRP Publication 23 [12] and ICRP Publication 89 [35]. Ap-

plications of stylized phantoms ultimately included many 

aspects of radiation protection, radionuclide therapy, and 

medical imaging [36]. In addition, national and international 

agencies have adopted organ dose estimates based on these 

stylized phantoms in guidelines and regulations related to 

industrial and medical uses of ionizing radiation. For com-
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puted tomography (CT) dose reporting, commercial soft-

ware systems developed before the 2000s were based on 

stylized patient models, which are known to cause large er-

rors when low-energy X-rays are utilized [37]. In epidemio-

logical studies, e.g., Stovall et al. [38], stylized models were 

used to derive dose-response relationships between Japa-

nese atomic bomb survivors and radiotherapy patients. In 

the early 1990s, Xu and his colleagues [39–42] used stylized 

phantoms, 24 PCs with Intel 486 processors, and MCNP 

code (version 3) to calculate organ doses and personnel do-

simeter responses for nuclear power plant workers. 

Although stylized phantoms made it possible to perform 

Monte Carlo computations during a time when computers 

were much less powerful, the original developers realized 

the obvious shortcomings of these phantoms. The human 

anatomy is too complicated to be realistically modeled with 

a limited set of surface equations. Many anatomical details 

in these models were missing, which sometimes led to inac-

curate dosimetric results [8].

2) Voxel Phantoms (from the 1980s to present)

The development of anatomically realistic models became 

feasible in the 1980s with the development of powerful com-

puter and tomographic imaging technologies such as CT and 

MRI. Xu [1] summarized the construction of a total of 84 vox-

el phantoms, usually from three types of tomographic imag-

es: CT and magnetic resonance (MR) images of live subjects 

and cross-sectional photographs of cadavers. In two previ-

ously published review articles, Caon [6] reported a total of 

21 voxel phantoms, and Zaidi and Xu [7] reported 38 voxel 

phantoms.

In terms of the developmental process, tomographic (voxel) 

phantoms are fundamentally different from stylized phan-

toms. A tomographic image dataset consists of many slices, 

and each slice displays an anatomical two-dimensional (2D) 

pixel map. The three-dimensional (3D) volume of a voxel is 

measured by multiplying the pixel size by the thickness of an 

image slice. Unlike stylized phantoms based on quadric sur-

face equations, a voxel phantom contains a large number of 

small cubes grouped to represent various anatomical struc-

tures. However, both quadric surface equations and cubic 

voxels belong to the same type of CSG geometries.

Generating a tomographic (voxel) phantom generally in-

cludes four steps. (1) Obtain a set of tomographic images 

(e.g., CT, MR, or anatomical photography) covering the en-

tire volume of the body. (2) Identify (or segment) organs or 

tissues of interest (e.g., lungs, liver, or skin) from the original 

image slice by assigning every pixel an identification num-

ber. (3) Specify the density (e.g., soft tissue, hard bone, or air) 

and chemical composition of organs and tissues. And (4) 

register the segmented image slices into a 3D volume that 

can be used for 3D visualization (for checking anatomical 

structures) and for Monte Carlo calculations. Fig. 3 illustrates 

these steps using the visible photographic man (VIP-Man) 

phantom [43].

The rapid development of voxelized phantoms by re-

searchers from different countries was discussed in detail by 

Xu [1]. Gibbs of Vanderbilt University and his colleagues [44–

46] were the first to work on creating image-based radiation 

dose phantoms. However, Zankl and her colleagues [47–52] 

Fig. 3. Steps to create a voxel phantom using the visible human cadaver image dataset as an example. Adapted from Xu [1]. Phys Med Biol. 
2014;59(18):R233-R2302 with the permission of IOP Publishing.
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from German, who are one of the most well-known groups, 

started to use CT imaging in the late 1980s for what eventual-

ly became a family of 12 voxel phantoms: BABY, CHILD, 

DONNA, FRANK, HELGA, IRENE, GOLEM, GODWIN, VISI-

BLE HUMAN, LAURA, KLARA, and KATJA. Recognizing the 

potential of voxel phantoms, the ICRP [53] stated that “An 

important issue for Committee 2 is the substitution of an an-

atomically realistic voxel phantom, obtained digitally in 

magnetic resonance tomography and/or computed tomog-

raphy, for the MIRD phantom which is a mathematical rep-

resentation of a human body.” The ICRP Committee 2 has a 

dose calculations (DOCAL) task group, which is directly re-

sponsible for developing sets of standard voxel phantoms. 

Later, the team led by Zankl [54] made major modifications 

to the GOLEM and LAURA phantoms, resulting in new 

phantoms called REX and REGINA, which were released to 

the public as the ICRP adult Reference Male and Reference 

Female [55].

Zubal et al. [56] from Yale University in the United States 

published a head-torso model called VoxelMan, which was 

developed from CT images. Other researchers revised the 

original VoxelMan data, which was publicly available, to de-

velop the MANTISSUE3-6 and VOXTISS8 [57, 58], MAX (Male 

Adult voXel) [59], FAX (Female Adult voXel) [60], MAX06, and 

FAX06 phantoms [61]. The work by Kramer et al. [61] was one 

of the earliest efforts to create ICRP-89 compatible voxel phan-

toms for radiation protection dosimetry. In 2008, Akkurt et 

al. [62] from ORNL reported their work involving a mixture of 

voxel and stylized geometries.

In 1996, Dimbylow [63] from the United Kingdom used 

MR images for an adult male phantom known as NORMAN 

to calculate exposure levels to nonionizing electromagnetic 

fields [64]. Later, this phantom was used to estimate organ 

doses from external and internal photon sources [65]. In 

2005, Dimbylow [66] developed an adult female phantom, 

NAOMI, from MR scans. In 2005, a revised version of the 

NORMAN phantom, called NORMAN-5, was created in Italy 

to derive external photon dose data [67]. One year later, 

Dimbylow and his colleagues [68, 69] merged NAOMI with 

stylized and voxelized fetal phantoms to create a series of hy-

brid phantoms of pregnant women.

In 1999, Caon et al. [70, 71] from Australia reported a torso 

phantom named ADELAIDE, which was generated based on 

CT images of a 14-year-old girl. Caon [6] later reviewed his 

and other researchers’ experiences on voxel phantoms.

Work at the Rensselaer Polytechnic Institute (RPI) on voxel 

phantoms began with the VIP-Man voxel phantom [43]. The 

uniqueness of this phantom was that it was developed using 

cross-sectional color photographic images of an adult male 

cadaver. These images were from the visible human project 

(VHP) sponsored by the National Library of Medicine [72]. 

Ultrafine color image analysis allowed many small and ra-

diosensitive tissues, such as the stomach mucosa, skin, and 

red bone marrow, to be clearly defined in the phantom. The 

VIP-Man phantom was used in many studies and will be dis-

cussed later in this article. It is worth noting that the CT data 

from the VHP were also used by Zankl et al. [48] from Ger-

many and Segars [101] from the United States. The RPI group 

later reported a voxel pregnant female phantom using CT 

images of a 30-week pregnant patient and compared inter-

nal dose data with those derived from a stylized phantom 

[73, 74].

Xu and his coworkers [43] proposed the concept of a “digi-

tal human” by stating that “VIP-Man is digital, and it can be 

easily adopted for applications beyond radiation transport 

by coupling with physical properties that are electrical, ther-

mal, chemical, mechanical, or biological. When these be-

come technically possible in the future, the reality of a ‘virtual 

digital human’ for every citizen in the ‘digital society’ will be 

within reach.” After 20 years, we are steps closer to realizing 

that vision.

Realizing the need for more phantoms representing chil-

dren of different ages, Bolch and colleagues [75–77] from the 

University of Florida developed a series of voxel phantoms 

for children, representing children from newborn to 15 years 

of age. The purpose of the University of Florida pediatric se-

ries was to provide a reference library of phantoms that 

could be matched to the age-specific organ dose assessment 

of individual patients.

Voxel phantoms were developed and used by groups from 

many countries. Japanese voxel phantoms include Otoko, 

Onago JM (Japanese adult Male voxel), JM2, and JF (Japanese 

adult Female voxel) [78–82], TARO and HANAKO [83], and 

deformed phantoms representing children of 3, 5, and 7 years 

of age [84]. Korean voxel phantoms include Korean Man 

(KORMAN), Korean Typical MAN-1 (KTMAN-1), Korean 

Typical Man-2 (KTMAN-2), High-Definition Reference Kore-

an (HDRK), and Korean WOMAN (KORWOMAN) [19, 85–87]. 

Chinese voxel phantoms include Chinese Man (CNMAN) 

[88], Visible Chinese Human (VCH) [89–91], Chinese Voxel 

Phantom (CVP) [92, 93], and Reference Taiwanese Adult 

phantoms [94]. Voxel phantoms by groups from other coun-
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tries include NUDEL (NUmerical moDEL) from Italy [95], 

work from France [96, 97], work from Austria [98], work from 

Iran [99], and work from India [100].

3) BREP phantoms (from the 2000s to present)

As detailed by Xu [1], in the past ten years, more than ten 

groups around the world have contributed to the astonishing 

surge in the development of the BREP phantom. As of 2014, 

a total of 183 BREP-based phantoms have been reported 

globally. BREP phantoms are still being reported in the liter-

ature and will continue to contribute to the exponential 

growth pattern of phantoms that began 60 years ago.

One of the earliest works was described in a Ph.D. thesis at 

the University of North Carolina using NURBS-based tech-

niques [101]. The famous NURBS-based cardiac-torso (NCAT) 

phantom was developed from the Visible Human CT image 

dataset, and its 3D anatomy was later extended into the 4th 

dimension (4D) to simulate cardiac and respiratory motions. 

The beating heart model of the 4D NCAT was based on the 

4D labeled MRI data of a real patient. The 4D NCAT phan-

tom provides a very large improvement, including more re-

alistic anatomy and new physiology, over the stylized MCAT 

phantom, which was also worked on by the same research 

group [102]. The 4D NCAT phantom has been widely used, 

especially in nuclear medicine imaging research, to evaluate 

and improve myocardial SPECT imaging. A 4D digital mouse 

phantom named MOBY was also developed [102–104]. Later, 

the group that developed MOBY also reported the extended 

cardiac torso (XCAT) family, which included 35 males and 

23 females 4D computational phantoms [105]. The NCAT 

and XCAT phantoms have been used by other research 

groups [106–112].

Xu et al. [113] from RPI reported a set of phantoms at the 

end of the 3-, 6-, and 9-month gestation periods, called RPI-

P3, RPI-P6, and RPI-P9, respectively, using BREP modeling 

techniques. Later, they reported a pair of standardized phan-

toms called RPI Adult Male and Adult Female. These phan-

toms were carefully adjusted to match ICRP-89 reference val-

ues for more than 70 organs and 45 bones, including the cor-

tical bone, spongiosa, and cavities, as well as muscles [114]. 

The Adult Male and Adult Female phantoms from RPI were 

also expanded into phantoms of specific weights, represent-

ing the 5th, 25th, 50th, 75th, and 95th weight percentiles, female 

phantoms with different breast sizes to study the effect on 

the lung counting of internally deposited radionuclides [29], 

and 10 phantoms representing overweight and obese indi-

viduals with body mass index (BMI) from 26 to 48 kg/m2 [115]. 

A unique type of posture-specific phantom was also reported 

by this group to more realistically model how people behave 

in real-world radiation environments, including a pair of 

walking phantoms [116], sitting phantoms [117], and com-

putational human for animated dosimetry (CHAD) phantoms 

with adjustable postures defined by a motion capture system 

for critical accidents [118]. Fig. 4 shows the process of using 

motion capture to create a real sequence of worker actions.

In a series of papers, the research team at the University of 

Florida reported their research on “hybrid” NURBS/voxel 

family phantoms, including male, female, and children of 

different ages [119–122]. Later, this group also reported a 

family of NURBS-based fetal phantoms [123]. One important 

contribution of this group to the literature was in the field of 

bone marrow dosimetry. For the purpose of radiation pro-

tection, photon or neutron dose-response functions could 

report the active marrow and endosteum dose by tallying 

Fig. 4. Motion capture technology was used to develop a realistic posture sequence for a critical accident. (A) A worker was exposed to a 
critical incident and died 66 hours later. (B) An actor reconstructed the postures of the worker using motion capture. (C) The postures of the 
actor were recorded sequentially. (D) The CHAD phantom recreated the same sequential postures as the actor. (E) A total of nine postures 
were used for Monte Carlo dose calculations. Adopted from Ref [1] with permission. CHAD, computational human for animated dosimetry.

A B C D E
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photon or neutron fluence in spongiosa regions of the skele-

ton [124]. Using anatomically realistic phantoms developed 

at the University of Florida, Johnson et al. [125] reported us-

ing the 3-factor method as an alternative to the dose-re-

sponse function for photon skeletal dose. This method was 

also applied to neutrons by Bahadori et al. [126]. The Univer-

sity of Florida hybrid adult male phantom has been widely 

used in dosimetric research [69, 126–132].

Additional BREP phantoms were also mentioned in a re-

view by Xu [1]. A group from Vanderbilt in the United States 

reported a “family” of adult and pediatric phantoms by 

adapting the NURBS-based NCAT adult male and female 

phantoms [133, 134]. A team from Brazil also reported work 

on a series of BREP phantoms, which included FASH (Fe-

male Adult meSH) and MASH (Male Adult meSH) [135, 136]. 

A team from France developed a series of female torso phan-

toms for in vivo lung monitoring [137]. Later, a separate proj-

ect at the Institute for Radiological Protection and Nuclear 

Safety (IRSN) used the CAESAR database to create a library 

of 25 whole-body male phantoms [138]. A team from Swit-

zerland reported the Virtual Family, which is a series of 

BREP-based phantoms used for electromagnetic exposure 

calculations using MR images [139, 140]. A series of nine 

phantoms representing a pregnant female in each gestation-

al month was developed at the University of Houston to study 

the effects of radiofrequencies emitted from various elec-

tronic devices [141]. Gu et al. [142] of the Center for Devices 

and Radiological Health (CDRH) developed a series of high-

resolution heart phantoms for accurate dosimetric calcula-

tions. Researchers at Hanyang University in Korea used 3D-

DOCTOR software to convert the voxel phantom Visible Ko-

rean Human-Man (VKH-Man) into a polygon surface phan-

tom and directly implemented this phantom into Geant4 

code to circumvent prior limitations [143, 144].

However, the aforementioned BREP phantoms suffer from 

a critical technical issue, as they are less compatible with ex-

isting Monte Carlo radiation transport codes. NURBS phan-

toms cannot be directly used in Monte Carlo codes [145]. In 

addition, only a few Monte Carlo codes, such as Geant4, can 

transport a particle in the polygon surface phantom geome-

try. Even in this case, the calculation speed is very slow com-

pared to when the voxel geometry is used. Kim et al. [143] 

showed that for the purposes of photon simulations in Mon-

te Carlo dose calculations, a polygonal surface phantom was 

approximately 70–150 times slower than a corresponding 

voxel phantom. Therefore, it is a common practice to convert 

the surface phantom into the voxel geometry via the “voxel-

ization” process [145, 146], thereby reverting to the inherent 

limitations of the voxel phantom.

To avoid voxelization of the polygonal mesh (PM), in 2014, 

Yeom et al. [147] proposed the conversion of the geometrical 

format of the PM into a tetrahedral mesh (TM) by using a 

“tetrahedralization” algorithm. The advantage of this ap-

proach is that the conversion does not distort the geometry; 

that is, the converted TM phantom maintains exactly the 

same organ shapes as in the original PM phantom. In addi-

tion, the TM phantom can be directly used in the Monte 

Carlo simulations. The results showed that in Geant4, the 

TM phantom is faster than the PM phantom by several or-

ders of magnitude.

Acknowledging both limitations of the voxel geometry and 

advantages of the TM geometry, the ICRP Task Group 103 

converted the voxel-type ICRP-110 reference phantoms into 

the adult male and adult female TM phantoms [148]. These 

TM phantoms are called mesh-type reference computation-

al phantoms (MRCPs). They were completed and tested with 

the Geant4, MCNP6, and PHITS (Particle and Heavy Ion 

Transport code System) codes for initialization time, compu-

tation speed, and memory requirements. The computational 

speed results showed that the male TM phantom on the 

PHITS code was 2–3 times faster than the male voxel-type 

reference phantom on the PHITS code for all particles (e.g., 

photons, electrons, and helium ions) and energies consid-

ered. The TM phantom on the Geant4 code was even faster 

than the voxel phantom on the PHITS code for photons and 

electrons by up to 20 times. However, the TM phantom on 

the MCNP6 code was slower than the voxel phantom on the 

PHITS code by up to 20 times [148].

The developed adult MRCPs were recently released through 

ICRP Publication 145 [149]. These phantoms are the mesh 

counterparts of ICRP Publication 110 voxel phantoms, which 

overcome the dosimetric limitations from the finite voxel 

resolutions and the nature of the voxel format. Hence, they 

replaced the ICRP Publication 110 voxel phantoms and will 

become the next generation of ICRP adult male and female 

reference phantoms in mesh format. The MRCPs include all 

the source and target organs and tissues required for the cal-

culation of the effective dose, including micrometer-thick re-

gions in the alimentary and respiratory tract organs, skin, 

eyes, and urinary bladder, significantly improving the accu-

racy of the dose calculation. These micron-scale structures 

could not be defined in the ICRP Publication 110 voxel phan-
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toms at the given millimeter-scale voxel resolutions. Another 

notable benefit of MRCPs is that they are highly deformable 

and thus can be used to create phantoms of various body 

sizes and postures, expanding their capabilities for individu-

alized dose reconstructions. In addition, MRCPs can be di-

rectly implemented into Monte Carlo codes, fully maintain-

ing the accuracy of the high-fidelity mesh geometry.

Taking advantage of the highly deformable MPCPs, Lee et 

al. [150] developed a total of 18 percentile-specific adult male 

and female phantoms by modifying the MRCPs. These phan-

toms represent the 10th, 50th, and 90th percentile standing heights 

and body weights in male and female Caucasian populations. 

Similarly, Choi et al. [151] established a body-size-dependent 

phantom library by modifying MRCPs. An in-house program 

for automatic phantom adjustment was developed and ap-

plied for the practical construction of such a large number of 

phantoms in the library with minimized human intervention. 

The established library includes 108 adult male and 104 adult 

female phantoms with different standing heights and body 

weights, covering most body sizes representative of Caucasian 

and Asian populations. Furthermore, Yeom et al. [152] de-

formed the MRCPs into five non-standing postures (i.e., walk-

ing, sitting, bending, kneeling, and squatting) by developing 

and using a systematic posture change method based on an 

as-rigid-as-possible (ARAP) shape-deformation algorithm 

and motion capture technology. The organ/tissue masses of 

the phantoms are consistent with those of the MRCPs. These 

phantoms, which are based on the ICRP adult MRCPs, retain 

all the advantages of the ICRP adult MRCPs, such as the defi-

nition of the micron-scale regions and the accuracy of the 

dose calculation. Recently, following the completion of adult 

MRCPs, Task Group 103 also completed the development of 

pediatric MRCPs, which have the same advantages as those 

presented in adult MRCPs. These phantoms are the next gen-

eration of ICRP pediatric (newborn, 1-, 5-, 10-, and 15-year-

old male and female) reference phantoms in a mesh format 

that will replace those of ICRP Publication 143 in a voxel for-

mat. Choi et al. [153] introduced developed pediatric MRCPs 

with a brief explanation of the development process and dis-

cussed their computational performance in the general-pur-

pose Monte Carlo codes.

2.  Autosegmentation to create person-specific 
 phantoms using AI

Reference Man refers to the average population of a spe-

cific age and gender with loss of individual features. We must 

note the differences between the “population-averaged” 

prospective dosimetry needed for radiological protection 

under the current ICRP radiation protection system and the 

“individualized” retrospective dosimetry needed for acci-

dent dose reconstruction, medical dose tracking, or epide-

miological studies [1]. Currently, radiation-related products 

and applications, such as CT and PET, have widely appeared 

in people’s lives. Obviously, these products and applications 

will introduce a relatively large dose error when using the 

population-averaged phantom. Some studies have suggest-

ed that the organ dose error for CT between person-specific 

phantoms and population-averaged phantoms can reach up 

to 40% [154, 155]. Therefore, the creation of the person-spe-

cific phantom is very important. Generally, the CT image is 

the best choice to create a person-specific phantom due to 

the rich anatomical structure feature data provided by the 

CT image. However, the key step is the accurate delineation 

of organs. In the past, the delineation of organs was usually 

completed manually by the clinician to achieve high contour 

accuracy. However, the manual delineation is labor-inten-

sive and time-consuming, which places tremendous pres-

sure on clinicians [156]. This also leads to the limited use of 

person-specific phantoms in clinics.

However, the person-specific phantom has been applied 

in radiotherapy for a long time due to the use of dose calcu-

lations that require high accuracy. With the widespread use 

of radiotherapy, the fast and accurate delineation of organs 

has been an urgent problem to be solved by oncologists. In 

the past few decades, many methods of organ autosegmen-

tation have been proposed to provide fast and accurate de-

lineation. In the early stages, most segmentation techniques 

used no or little prior knowledge, relying on the developer to 

encode their idea of what would provide good segmentation. 

These methods include intensity thresholding, region grow-

ing, and heuristic edge detection [157–159], which are referred 

to as low-level segmentation approaches. Subsequently, more 

advanced technologies have been developed. For example, 

region-based techniques include active contour level-sets, 

graph cut, and watershed algorithms [160–163], and proba-

bility-based techniques include Gaussian mixture models, 

clustering, k-nearest neighbor, and Bayesian classifiers [164, 

165]. These techniques use a limited quantity of prior knowl-

edge in the form of statistical information about the appear-

ance and shape of organs. In the last two decades, a large 

amount of exploratory work has been invested in making 

better use of prior knowledge, such as multi-atlas-based seg-
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mentation, which has been one of the most effective segmen-

tation approaches in different challenges [166–168]. However, 

its segmentation performance largely depends on the per-

formance of deformable registration, which, in turn, depends 

on the similarity of the morphology of organs of interest be-

tween the atlas and the new image. All of these methods are 

insufficient for widespread clinical use due to poor segmen-

tation quality. Fortunately, in recent years, the advent of deep 

learning methods involving convolutional neural networks 

(CNNs) has brought an unprecedented level of innovation to 

the field of image segmentation. Deep learning-based seg-

mentation approaches have been the most powerful and 

dominant segmentation approaches [167, 169].

Deep learning is a specific part of the broader field of ma-

chine learning where algorithms can learn data representa-

tions on their own. Specifically, deep learning uses a CNN 

with multiple hidden layers to learn features from a dataset 

by modeling complex nonlinear relationships. The advance-

ment of deep learning is attributed to big data, strong com-

puter power (e.g., GPU applications), and efficient algorithms 

[170]. The state-of-the-art models in deep learning for organ 

segmentation are mainly variants of encoder-decoder archi-

tectures such as U-Net [171]. In the 2017 AAPM Thoracic Au-

tosegmentation Challenge, which provided a standardized 

dataset and evaluation platform for testing and discussing 

the state-of-the-art automatic segmentation methods for  

radiotherapy, the team who obtained the first prize used a 

deep CNN, which was modified from the U-Net architecture 

[167]. Their approach reached and even exceeded the accu-

racy of clinicians for the segmentation of the lung, heart, and 

spinal cord [167]. In addition to CNN architectures, some 

techniques, such as data augmentation [172] and transfer 

learning [173], have also been proposed to improve the per-

formance of organ segmentation. These advances have led 

to the exponential growth of publications on medical image 

segmentation with deep CNNs in recent years [174]. In par-

ticular, Isensee et al. [175] recently developed nnU-Net, a 

deep learning-based segmentation method that automati-

cally configures itself, including preprocessing, network ar-

chitecture, training, and postprocessing for any new task. 

Without manual intervention, nnU-Net surpasses most ex-

isting deep learning approaches, including highly special-

ized solutions, on 23 public datasets used in international 

biomedical segmentation competitions. In summary, by us-

ing deep learning, the quality of organ segmentation was 

greatly improved, and the segmentation accuracy can reach 

the level of humans for many organs.

With the development of organ autosegmentation tech-

niques, corresponding software was also developed, such as 

DeepViewer (Wisdom Tech, Hefei, China; http://www.wis-

dom-tech.online/), which is based on the deep learning al-

gorithm and can automatically perform the organ segmen-

tation of CT images in a few minutes. The Dice similarity co-

efficient of most organs was over 0.8 [169]. Fig. 5 shows the 

organ segmentation results of thoracic CT images and the 

corresponding person-specific phantoms using this software. 

In addition to the automatic segmentation function, this soft-

ware also has many modification functions, which is conve-

Fig. 5. Visualization of organ autosegmentation results and person-specific phantoms based on thoracic CT images in DeepViewer software. 
CT, computed tomography.

http://www.wisdom-tech.online/
http://www.wisdom-tech.online/
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nient for doctors to quickly make manual modifications. 

Currently, DeepViewer has been deployed to more than 40 

hospitals in China. The development of this organ autoseg-

mentation software will make it easier and more convenient 

for the creation of person-specific phantoms.

In addition to radiotherapy, there have been other current 

studies involving the creation of person-specific phantoms. 

In the field of nuclear medicine, the person-specific phantom 

was built to accurately calculate the internal radiation dose. 

However, most of the current studies in nuclear medicine 

still use manual segmentation [176, 177]. In CT organ dose 

evaluation, more studies have used autosegmentation tech-

niques to create person-specific phantoms. For example, Fu 

et al. [178] used a deep learning technique to contour major 

organs in the thorax and abdomen, and smaller organs and 

structures were contoured by an atlas-based technique; Lee 

et al. [155] used a multi-atlas label fusion technique to con-

tour major abdominal organs in approximately 30 minutes 

per patient; Peng et al. [154] used a deep learning technique 

to contour major thoracic or abdominal organs in approxi-

mately 5 seconds per patient. These studies suggested that 

current autosegmentation technology greatly saves the con-

struction time of the person-specific phantom. This makes it 

possible for the person-specific phantom to be widely used 

in clinical practice. In the future, we believe that autoseg-

mentation technology, especially deep learning-based algo-

rithms, will be widely used in the creation of person-specific 

phantoms.

3. Real-Time Monte Carlo to Calculate Organ Doses
To calculate organ doses, computational phantoms are 

combined with Monte Carlo radiation transport simulation 

methods. Monte Carlo methods can account for all aspects 

of particle interactions within 3D heterogeneous media, such 

as the human body. In a Monte Carlo code, random numbers 

are used to determine the distance and outcome of a particle 

by comparing interaction probabilities for every geometrical 

region of interest. This rather tedious process is repeated  

for an extremely large number of particles (often exceeding  

1 billion), and each particle is tracked in the 3D anatomical 

model until all its energy is absorbed or the particle escapes 

from the transport geometry. The inherent statistical uncer-

tainty can be controlled to be less than 1%, which is often 

more precise than an experimental result performed in a 

physical phantom using a dosimeter (for quantities such as 

the absorbed dose). With improvements in computer afford-

ability and computing power over the last 30 years, Monte 

Carlo codes are essential in many applications in nuclear en-

gineering, health physics, and medical physics. Nearly all ex-

isting Monte Carlo codes can handle CSG shapes, including 

voxels. There are many comprehensive reviews or introduc-

tory articles about Monte Carlo methods for health physics 

and medical physics [179–184]. Some of the public-domain, 

general-purpose Monte Carlo codes used for radiation dose 

calculations include EGS [185], FLUKA [186], Geant4 [187], 

MCNP [188], MCNPX [189], MCNP6 [190], and PENELOPE 

[191]. In addition, there have been specific Monte Carlo codes 

for radiotherapy [183]. However, there is an obvious draw-

back to Monte Carlo methods. The statistical nature of Mon-

te Carlo methods requires a long computation time to reach 

an acceptable level of precision, and as a result, Monte Carlo 

codes are often not used in routine clinical applications that 

demand a quick response [184]. Monte Carlo algorithms are 

ideally suited for parallel computing, and certain Monte Car-

lo algorithms are considered “embarrassingly parallelizable” 

[188]. In fact, high-performanc e parallel computers or cloud 

computing can be used for large scientific problems. Many 

users, especially those in the clinical setting, still prefer desk-

top computers that are affordable, accessible, and private.

In the past several years, researchers have realized that 

GPU technologies, which were originally developed for com-

puter games, can be used to meet the needs for low-cost, 

high-performance general-purpose computing. With intrin-

sic parallel “stream processors,” GPUs are attractive in terms 

of cost, space, privacy, and ease of access when compared 

Fig. 6. GPUs offer more computing power than CPUs. Data from 
NVIDIA (https://docs.nvidia.com/cuda/archive/10.0/pdf/CUDA_C_
Programming_Guide.pdf). GFLOPS, giga floating point operations 
per second.
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with other technologies such as clusters, supercomputers, 

and cloud computing. As illustrated in Fig. 6, a GPU device 

offers 7.7 times more single-precision FLOPS (floating point 

operations per second) than the traditional CPU.

In the past several decades, an increasing number of top-

ranked supercomputers have adopted GPUs to boost com-

putational efficiency. GPU technologies will continue to ad-

vance rapidly as research activities in artificial intelligence, 

including deep learning, big data, and autonomous vehicles, 

have just begun to surge. However, despite exciting hardware 

advances, most existing production Monte Carlo radiation 

transport codes cannot run on GPU devices because GPUs 

operate on a different software operating system. For exam-

ple, the software operating system for NVIDIA products is 

called CUDA.

As reviewed by Pratx and Xing [192] and discussed by Jia 

and Xu [193], the radiology/oncology community has found 

the power of massively parallel GPU technologies to be ex-

tremely appealing. Several recent studies have attempted to 

use this technology for different applications of ionizing ra-

diation transport simulations. Badal and Badano [194] ported 

the general-purpose PENELOPE code into the GPU/CUDA 

environment for X-ray simulations to achieve a 27-fold in-

crease in speed. Jia et al. [195, 196] developed a GPU-based 

Monte Carlo coupled electron-photon transport code, gDPM, 

for radiation treatment dose calculations. Their speedup ex-

periment involved water-lung-water/water-bone-water phan-

toms and 20-MeV electron point source/6-MV photon point 

sources. However, only a six-fold increase in speed was ob-

served because there was no attempt to optimize the code 

for GPU/CUDA. To plan radiation treatment, Hissoiny et al. 

[197] developed a detailed GPU/CUDA electron transport 

code called GPUMC. A simplified photon-electron coupled 

transport model and a new GPU implementation algorithm 

were adopted, and a 200-fold increase in speed over the DPM 

code was achieved. Recently, Jia et al. [195] adopted algo-

rithms by Hissoiny et al. [197] and achieved a 69- to 87-fold 

increase in speed. Tickner [198] offered some insights into 

why most existing efforts have not yielded high expectations 

and proposed a number of innovative approaches associated 

with system of multiple initial points (SMIP) architecture, 

clock speed, and complex memory allocation schemes. His 

photon Monte Carlo code for the energy range of 1 keV–100 

MeV yielded a 35-fold increase in speed over the general-

purpose EGSnrc code. Jia et al. [199] also reported a fast 

Monte Carlo code gCTD for person-specific CT/CBCT dose 

calculation. A 400-fold increase in speed for the homoge-

neous water phantom and a 76.6-fold increase in speed for 

the voxel phantom compared to the general-purpose EGSnrc 

code was reported. Work at RPI has led to the development 

of a GPU-based Monte Carlo code, Accelerated Radiation-

transport Computations in Heterogeneous EnviRonments 

(ARCHER) [200], as a testbed for diverse applications involv-

ing nuclear reactor analysis, CT X-ray imaging dosage [200], 

and radiation therapy [201]. As detailed in two Ph.D. disser-

tations, this group took a very unique approach compared to 

other groups [202, 203].

The Monte Carlo method is taken to be the gold standard 

for a large body of research work found in nuclear engineer-

ing, health physics, and medical physics. Therefore, recent 

attention to circumvent the bottleneck of time-consuming 

Monte Carlo calculations using GPUs is justified, and the ap-

proaches in leveraging extremely successful gaming technol-

ogies appear to be innovative. Many early studies by research-

ers in the Monte Carlo community showed the feasibility of 

unprecedented subminute or subsecond Monte Carlo dose 

calculations. However, early adopters of GPU technology 

were criticized for their often-biased comparison of perfor-

mance against CPUs. It has also been noted that many paral-

lelization schemes for Monte Carlo acceleration, such as 

vectorized methods, are not truly new. Whether GPU-based 

Monte Carlo calculations are just hype and how much we 

should invest in this relatively new technological develop-

ment are issues that remain to be addressed today [193].

4.  Examples of person-specific phantoms and 
 GPU-based Monte Carlo methods

To illustrate how computational phantoms and Monte 

Carlo methods have advanced, projects performed by stu-

dents at RPI and the University of Science and Technology of 

China (USTC) are described in the examples below. The top-

ics of these projects cover health physics, diagnostic imaging, 

and radiotherapy.

1)  GPU-based ARCHER Monte Carlo code for CT imaging 

and radiation treatment dose calculations

Starting in 2009, Liu and Su became engaged in an ambi-

tious project to develop a new Monte Carlo code, named 

ARCHER, which is a software testbed designed to support 

research on Monte Carlo methods with different hardware 

platforms, including multiple-core CPUs, NVIDIA GPUs and 

Intel Xeon Phi coprocessors [146, 200, 202]. The hardware 
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has evolved continuously in the past several years. The early 

system we developed for the ARCHER project used a tradi-

tional CPU as the host and multiple GPUs by NVIDIA as the 

“devices,” forming a “heterogeneous computer architecture.” 

We also considered a competing technology called the “many 

integrated core (MIC)” by Intel. To reduce commercialization 

risks, we designed ARCHER to be compatible with both NVID-

IA and Intel technologies. We eventually learned that the task 

of developing an optimized Monte Carlo code for the CPU-

GPU or CPU-MIC system was extremely challenging.

The ARCHER code was first developed for CPUs using a 

single thread for comparison purposes before it was revised 

for the GPU platform to evaluate the code performance un-

der two different computing environments [200, 202]. Statis-

tical errors were kept at 1%. The hardware devices included 

NVIDIA K20, K40, and M2090 GPUs and an Intel Xeon Phi 

5110p coprocessor. The GPU/CUDA system supports the full 

use of the C++ programming language. It contains a new er-

ror-correcting code (ECC) memory technique to ensure 

large-scale computing accuracy. The hardware features a 

memory bandwidth of 3,144 GB/s per GPU and delivers up 

to 515 giga floating point operations per second (GFLOPs) of 

double-precision peak performance. The results for two 

medical physics applications are presented below: (1) X-ray 

CT dose calculations and (2) external beam radiation thera-

py dose verification.

Liu [200] also led the development of ARCHER for fast and 

accurate organ dose calculations based on CT images. The 

GE LightSpeed 16 CT scanner (GE Healthcare, Waukesha, 

WI, USA) was utilized, and a library of human phantoms was 

modeled. For performance comparison, the same random 

number generator and similar compiler options were used, 

and the hardware models were configured into the server 

mode. The organ dose results and computation time were 

benchmarked against the Monte Carlo code MCNPX. For a 

whole-body scan simulation, the organ doses by ARCHER 

were found to be in good agreement with those by MCNPX, 

with an average difference of 0.26%. This result suggests that 

ARCHER accurately simulated photon interactions [146, 200]. 

Since we designed all CPU, GPU, and MIC devices to run the 

same ARCHER code, we were able to focus on only the de-

vice performance, excluding potential software engineering 

effects. The computation times showed that GPU and MIC 

devices were able to achieve a 38- to 100-fold increase in speed 

compared with the CPU running on the same ARCHER radi-

ation transport algorithms. It was noted that it took the MC-

NPX code 476 minutes to achieve the same precision using a 

CPU server of 12 message passing interface (MPI) processors. 

The data presented here demonstrates that the GPU- and 

MIC-based ARCHER codes provide an extremely cost-effec-

tive way of accelerating Monte Carlo dose calculations. Since 

a typical CT scan only needs to cover a portion of the body 

and we can use as many as six GPU cards in our system, a 

common dose calculation based on CT images and ARCHER 

can take less than a second, which is therefore considered to 

be in near “real-time,” when using the latest NVIDIA GPU 

technologies.

Su et al. [201, 202] also extended the radiological physics  

of the ARCHER code to include a simple version of electron 

transport (up to 20 MeV). This code was then used to com-

pare with methods currently being used at the University of 

Wisconsin Medical Center for head, neck, lung, and prostate 

cancer treatment cases. A radiation treatment machine known 

as the “TomoTerapy electron accelerator” was simulated using 

ARCHER. Patient CT images were converted to voxel phan-

toms for dose calculations. The dose distribution of accelera-

tor phase-space files incident on a homogeneous water phan-

tom was used in the comparison against those obtained clin-

ically using the production Monte Carlo code Geant4.

2)  Method of virtual source modeling for external photon 

 radiotherapy and its clinical application in dose checking

Xu [203] developed a virtual source model for external 

photon beam radiotherapy and integrated it into the dose 

verification software ArcherQA. When using the Varian 

TrueBeam or Elekta Axesse, the the depth doses by a virtual 

source model depth doses agree within 2% with the mea-

surements, and the lateral doses are both within 3%. The 

dose profiles of ARCHER and EGSnrc are consistent with the 

film measurements, while the profile of Elekta Monaco devi-

ates significantly from the film measurements. For clinical 

cases, ARCHER.QA and Eclipse have a better degree of com-

pliance. The 3 mm/3% and 2 mm/2% gamma passing rates 

are above 96% and 90%, respectively. This work has resulted 

in a breakthrough for Monte Carlo independent dose valida-

tion software in China.

3)  Organ segmentation using machine learning and 

 person-specific CT organ dosimetry

Peng et al. [154] developed an automatic multiorgan seg-

mentation method using a CNN model that was trained with 

two publicly available CT databases involving a total of 103 
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patients. This method performs automatic multiorgan seg-

mentation for one patient in less than 5 seconds and has 

achieved good segmentation accuracy for the purpose of CT 

organ dosimetry in the testing cases considered in this study. 

The organ dose calculation method is completed in less than 

4 seconds and requires 1× 108 photons using the GPU-based 

rapid Monte Carlo code ARCHER to achieve an organ dose 

statistical uncertainty better than 0.5%. These results dem-

onstrate, for the first time, the excellent accuracy and effi-

ciency of a streamlined person-specific organ dosimetry 

computational tool. Implementation of such methods as 

part of the clinical workflow can yield considerable improve-

ments over the current CT organ dose methods that are 

based on population-average phantoms, thus opening the 

door to prospective person-specific optimization features in 

the future.

4)  Whole-body organ dose database for radiotherapy based 

on autosegmentation and fast Monte Carlo calculation

Qiu led a team to develop a whole-body organ dose data-

base for radiotherapy based on autosegmentation and a fast 

Monte Carlo calculation. The autosegmentation software 

DeepViewer [154, 169], which is based on deep learning, was 

utilized to obtain organ segmentation information on sys-

temic CT scans of a case of a patient with esophageal cancer. 

Then, the whole-body dose distribution was calculated by 

using the GPU-accelerated Monte Carlo software ARCHER 

[146, 200, 202]. The absorbed dose of each organ was calcu-

lated by organ mapping information and whole-body dose 

distribution. With patient information and organ dose data, 

a whole-body organ dose database was constructed. Finally, 

the Lyman-Kutcher-Burman (LKB) model was used to ex-

pand the organ risk assessment.

5. Limitations
The organs in stylized phantoms are represented using 

simple geometry due to poor computer power at the time of 

their inception. This obvious shortcoming leads to inaccu-

rate dosimetric results. For voxel phantoms, due to the finite 

voxel resolution, it is difficult to model very thin structures 

such as micron-scale radiosensitive tissue layers of the skin 

or the alimentary and respiratory tract organs. In addition, 

voxel phantoms are rigid, making it difficult to adjust the 

posture of a phantom or use a different body size. For early 

BREP phantoms, such as NURBS phantoms and polygon 

surface phantoms, a critical technical issue results from 

compatibility issues with the existing Monte Carlo radiation 

transport codes. One limitation of tetrahedral mesh phan-

toms is that they cannot be used to evaluate the dose of a 

specific person when the required accuracy of dose calcula-

tions is very high, for example, in radiotherapy. The limita-

tion of the person-specific phantom is that it is affected by 

the accuracy of organ autosegmentation.

In AI-based organ autosegmentation, first, high-quality 

segmented datasets are required to train a good model. Cur-

rently, the segmentation accuracy for most organs in CT im-

ages can achieve the clinical standard. However, for some 

organs, such as the optic chiasm, AI-based organ autoseg-

mentation needs to be improved further. This problem could 

be addressed by combining CT and other imaging modali-

ties. In addition, the generalization of the AI-based model is 

a noteworthy problem. Organ appearance could be affected 

by all types of diseases or variations in image acquisition 

protocols, which could potentially affect the performance of 

an AI-based model. Fortunately, this limitation could be ad-

dressed by using datasets from multiple institutes and data 

augmentation techniques. To ensure the safety of the patient, 

a manual check by the clinician may be necessary when AI-

based autosegmentation software is used. A controversial 

limitation of AI-based algorithms is that they provide little 

interpretability for understanding how and which features 

affect the trained network during segmentation prediction. 

This hinders the ability to fully understand and identify the 

cause behind inaccurate segmentations [204].

There are many Monte Carlo codes in the radiation pro-

tection community. However, open-sourced GPU-based 

Monte Carlo codes that are well-used are difficult to find. A 

considerable amount of work is required to convert CPU 

codes to GPU codes. In addition, existing Monte Carlo codes 

are unable to handle a “moving” target such as the dynamic 

heart or lung [1].

Conclusion

Xu [1] reviewed several hundreds of computational phan-

toms according to three types of geometric modeling tech-

niques. This review gave rise to the surprising discovery that 

the number of computational phantoms followed a pattern 

of exponential growth in the past 50 years. This finding sug-

gests that we were unprepared for such rapid growth in com-

putational phantom research in recent decades, which is re-

flected well in a phenomenon observed by Kurzweil [205] in 
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his best seller, “The Singularity Is Near: When Humans Tran-

scend Biology”; human beings tend to underestimate the 

technological growth rate.

The history of computational phantom development has 

also shown that it is the need for solving practical problems, 

not the need for policy-making, that has determined the 

course of technological advancement. The need for simulat-

ing organ motions for cardiac imaging, for example, resulted 

in the development of the MCAT phantom by Segars et al. 

[103] using quadric and the super quadric surface equations 

and NCAT models by Segars [101] using the NURBS technol-

ogy. Shi and Xu [73] adopted “the geometry-based” respira-

tion algorithm in the NCAT phantom for radiation treatment. 

Later, Eom et al. [206] developed “physics-based” respira-

tion-simulating 4D phantoms to understand and “predict” 

the effects of respiration on radiation treatment. Using the 

same approach, Lee et al. [119] developed size-adjustable 

pediatric models. The BREP-based pregnant females devel-

oped by Xu et al. [113] and those by Stabin et al. [134] are also 

examples of application-driven research that will likely con-

tinue to dominate the research horizon in the future.

In the deep learning era, AI-based autosegmentation tech-

nologies have enabled fast and accurate delineation of or-

gans compared with manual processes. This will greatly pro-

mote the creation of person-specific phantoms in the future. 

The BREP-based phantoms will always be a continued re-

search topic in the future. NURBS geometries are flexible 

and computationally efficient, but fine details may be lost on 

certain organs that have complex topologies. Polygonal 

mesh geometries can be used to create very smooth surfaces 

with an impressive amount of anatomical detail at the cost of 

an excessive number of vertices. However, the calculation 

speed of the Monte Carlo simulations is slow. Tetrahedral 

mesh geometries greatly improve the calculation speed of 

the Monte Carlo simulations for BREP-based phantoms. 

Geometrical modeling of the human body is a challenge be-

cause it consists of organ surfaces of complex and unique 

shapes. For cardiac and respiratory motions in the frequency 

range of 10–100 cycles per second, mesh models may still be 

appropriate. However, previous work has also shown that 

NURBS primitives are easy to adopt for both real-time and 

non-real-time applications. Therefore, specific strategies will 

likely be based on the applications and user preferences. Re-

gardless of the specific BREP data structure, there is currently 

an urgent need for application-based software that can 

streamline the segmentation process.

AI or deep learning provides powerful weapons for work 

in “modeling of digital human,” in terms of a computational 

phantom [43]. Automatic multi-organ segmentation is a di-

rect beneficiary of the latest breakthrough. With new hard-

ware technologies such as GPUs and MIC coprocessors, we 

have demonstrated the feasibility of near “real-time” Monte 

Carlo dose calculations involving a voxel and BREP phantom 

[200, 202]. “Real-time” MC simulations—a computational 

task accomplished in less than one second—is a visionary 

concept that is being demonstrated today [193]. In the past 

several years, the timing of GPU-based Monte Carlo simula-

tions has been steadily decreasing, from 1,000 to 100 sec-

onds, and has now decreased to a few seconds. Therefore, it 

is reasonable to expect that “real-time” Monte Carlo simula-

tions will soon become a commonplace. Such a Monte Carlo 

simulation capability, associated with the autosegmentation 

of tomographic images, will likely further increase the rate of 

computational phantom research toward the 4th generation 

of “person-specific” and “multiscale” phantoms. Such phan-

toms will contain deformable anatomies that are physics-

based and are, therefore, biomechanically realistic in depict-

ing real-time and multiorgan deformation associated with 

cardiac and respiratory motions. These phantoms will also 

possess physiological and functional information of the hu-

man body at the organ and cellular levels obtained from 

emerging radiology devices [43]. By 2030, breakthroughs in 

computational radiobiology, in the context of cancer radio-

therapy and radiobiological effects, are expected to bring a 

new horizon to personalized radiation medicine by under-

standing and harnessing the massive power of genomic data. 

Real-time Monte Carlo calculations will be performed rou-

tinely in shielding design and radiation oncology clinics. As 

the past 60-year history has revealed to us, coordinated and 

cooperative efforts among radiological engineers, computer 

scientists, biologists, and clinicians will always be the key to 

the success of future research endeavors.
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