COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik (Department Of Nuclear And Radiological Engineering, University Of Florida) ;
  • Lee, Jai-Ki (Department of Nuclear Engineering, Hanyang University)
  • Published : 2006.04.01

Abstract

Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

Keywords

References

  1. International Commission on Radiation Units and Measurements. Phantoms and Computational Models in Therapy, Diagnosis and Protection, ICRU report 48, ICRU,Bethesda(1992)
  2. W.S. Snyder and J.Neufeld, 'Calculated depth dose curves in tissue for broad beams of fast neutrons', Brit. J. Radiol. 28(331), 342-350(1955) https://doi.org/10.1259/0007-1285-28-331-342
  3. J.A. Auxier, W.S. Snyder and T.D. Jones, 'Neutron interactions and penetration in tissue', in: Radiation Dosimetry, vol 1, F.H. Attix and W.C. Rosch, eds., 275-316, Academic Press, New York(1968)
  4. R.L.Hayes and M. Brucer, 'Compartimentalized phantoms for the standard man, adolescent and child', Int. J. Appl.Radiat. Isot., 9,113(1960) https://doi.org/10.1016/0020-708X(60)90016-8
  5. H. L. J. Fisher and W. S. Snyder, Distribution of Dose in the Body from a Source of Gamma Rays Distributed Uniformly in an Organ, ORNL-4168, Oak Ridge National Laboratory (1967)
  6. International Commission on Radiological Protection, Recommendations of the ICRP, Publicatioin 26, Pergamon Press(1977)
  7. International Commission on Radiological Protection, 1990 Recommendations of the International Commission Radiological Protection, Publication 60, Pergamon Press(1991)
  8. H. L. J. Fisher and W. S. Snyder, Variation of Dose Delivered by 137Cs as a Function of Body Size from Infancy to Adulthood, ORNL-4007, Oak Ridge National Laboratory (1966)
  9. W. S. Snyder, M. R. Ford, G.G. Warner and H. L. Fisher, Jr. 'MIRD Pamphlet No.5: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed invarious organs of a heterogeneous phantom,' J. Nucl. Med., 10, 1 (1969)
  10. International Commission on Radiological Protection, 'Report on the Task Group on Reference Man,' ICRP Publication 23, Pergamon Press(1975)
  11. W. S. Snyder, M. R. Ford and G.G. Warner., Revised Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom, MIRD Pamphlet No 5, Society of Nuclear Medicine (1978)
  12. R. Kramer, M. Zankl, G. Williams and G. Drexler, The calculation of dose from external photon exposures using reference human phantoms and Monte-Carlo methods, Part 1: The male (ADAM) and female (EVA) adult mathematical phantoms, GSF Bericht S-885, GSF-National Research Center for Health and Environment (1982)
  13. International Commission on Radiological Protection, Conversion Coefficients for Use in Radiological Protection against External Radiation, Publication 74, Pergamon Press(1996)
  14. M. G. Stabin, E. Watson and M. Cristy. Mathematical Models and Specific Absorbed Fractions of Photon Energy in the Nonpregnant Adult Female and at the End of Each Trimester of Pregnancy, ORNL/TM-12907, Oak Ridge National Laboratory (1995)
  15. International Commission on Radiological Protection, Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values, Publication 89, Pergamon Press(2003)
  16. J. M. L. Hwang, R. L. Shoup and J. W. Poston, Mathematical Description of a Newborn Human for Use in Dosimetry Calculations, ORNL/TM-5453, Oak Ridge National Laboratory (1976)
  17. J. M. L. Hwang, R. L. Shoup, G. G. Warner and J.W. Poston, Mathematical Description of a One- and Five-year-old Child for Use in Dosimetry Calculations, ORNL/TM-5293, Oak Ridge National Laboratory (1976)
  18. R. M. Jones, J. W. Poston, J. L. M. Hwang, T.D. Jones and G.G. Warner, The Development and Use of a Fifteenyear- old Equivalent Mathematical Phantom for Internal Dose Calculations, ORNL/TM-5278, Oak Ridge National Laboratory (1976)
  19. S. F. Deus and J. W. Poston, 'The development of a mathematical phantom representing a 10-year-old for use in internal dosimetry calculations', In Proceedings of The Symposium on Radiopharmaceutical Dosimetry, Oak Ridge, TN, 1976
  20. M. Cristy, Mathematical Phantoms Representing Children of Various Ages for Use in Estimates of Internal Dose, ORNL/NUREG/TM-367, Oak Ridge National Laboratory (1980)
  21. M. Cristy and K. F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources, ORNL/TM-8381 vol 1-7, Oak Ridge National Laboratory (1987)
  22. M. Stabin and R. Sparks, 'OLINDA - PC-based software for biokinetic analysis and Internal dose calculations in nuclear medicine [Abstract],' J. Nucl. Med., 44, 103P (2003)
  23. M. G. Stabin, 'MIRDOSE: personal computer software for internal dose assessment in nuclear medicine,' J. Nucl. Med., 37, 538 (1996)
  24. M. Rosenstein, Handbook of Selected Tissue Doses for Projections Common in Diagnostic Radiology, Food and Drug Administration (1988)
  25. D. G. Jones and B. F. Wall, Organ Does from Medical X-ray Examinations Calculated Using Monte Carlo Techniques, National Radiological Protection Board (1985)
  26. R. Staton, F. Pazik, J. Nipper, J. Williams, and W. Bolch. 'A comparison of newborn stylized and tomographic models for dose assessment in pediatric radiology,' Phys. Med. Biol., 48, 805 (2003) https://doi.org/10.1088/0031-9155/48/7/301
  27. W. Bolch, B. Pomije, J. Sessions, M. Arreola and J. Williams. 'A video analysis technique for organ dose assessment in pediatric fluoroscopy: applications to voiding cystourethrograms (VCUG),' Medical Physics, 30, 667 (2003) https://doi.org/10.1118/1.1561624
  28. O. H. Suleiman, J. Anderson, B. Jones, G. U. Rao and M. Rosenstein, 'Tissue doses in the upper gastrointestinal fluoroscopy examination,' Radiology, 178, 653 (1991) https://doi.org/10.1148/radiology.178.3.1994397
  29. S. H. Stern, M. Rosenstein, L. Renaud and M. Zankl, Handbook of Selected Tissue Doses for Fluoroscopic and Cineangiographic Examination of the Coronary Arteries, Food and Drug Administration (1995)
  30. K. F. Eckerman and J. C. Ryman, External Exposure to Radionuclides in Air, Water, and Soil, U.S. Environmental Protection Agency (1993)
  31. K. Eckerman, R. Leggett, C. Nelson, J. Puskin and A. Richardson, Cancer Risk Coefficients for Environmental Exposures to Radionuclides, US Environmental Protection Agency (1999)
  32. International Commission on Radiological Protection, Agedependent Doses to Members of the Public from Intake of Radionuclides: Part 1, Publication 56, Pergamon Press(1989)
  33. International Commission on Radiological Protection, 'Age-dependent doses to members of the public from intake of radionuclides: Part 2 - ingestion dose coefficients,' Publication 67, Pergamon Press(1993)
  34. International Commission on Radiological Protection, Human Respiratory Tract Model for Radiological Protection, Publication 66, Pergamon Press(1994)
  35. International Commission on Radiological Protection, Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 3 - Ingestion Dose Coefficients, Publication 69, Pergamon Press(1995)
  36. International Commission on Radiological Protection, Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 4 - Inhalation Dose Coefficients, Publication 71, Pregamon Press(1995)
  37. International Commission on Radiological Protection, Agedependent Doses to Members of the Public from Intake of Radionuclides: Part 5, Compilation of Ingestion and Inhalation Dose Coefficients, Publication 72, Pergamon Press(1996)
  38. International Commission on Radiological Protection, Doses to the Embryo and Fetus from Intakes of Radionuclides by the Mother, Publication 88, Pergamon Press(2001)
  39. L. G. Bouchet, W. E. Bolch, D. A. Weber, H. L. Atkins and J. W. Poston, Sr., 'MIRD Pamphlet No. 15: Radionuclide S values in a revised dosimetric model of the adult head and brain. Medical Internal Radiation Dose,' J. Nucl. Med., 40, 62S (1999)
  40. L. Bouchet, W. Bolch, P. Blanco, B. Wessels, J. Siegel, D. Rajon, I. Clairand and G. Sgouros, 'MIRD Pamphlet No. 19: Absorbed fractions and radionuclide S values for six age-dependent multi-region models of the kidney,' J. Nucl. Med., 44, 1113 (2003)
  41. E. Farfan, E. Han, C. Huh, T. Huston, E. Bolch and W. Bolch, 'A revised stylized model of the extrathoracic and thoracic airways for use with the ICRP-66 respiratory tract model,' Health Physics, 86, 337 (2004) https://doi.org/10.1097/00004032-200404000-00002
  42. E. Y. Han, W. Bolch and K. Eckerman, 'Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema,' Health Physics, 90,3376 (2006) https://doi.org/10.1097/01.HP.0000192318.13190.c4
  43. S.J. Gibbs, A. Pujol, T. S. Chen and A. W. Malcolm, 'Computer-Simulation of Patient Dose from Dental Radiography,' J. Dental Research, 63, 209 (1984)
  44. S. J. Gibbs, A. Pujol, T. S. Chen, A. W. Malcolm and A. E. James, 'Patient Risk from Interproximal Radiography,' Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 58, 347 (1984) https://doi.org/10.1016/0030-4220(84)90066-5
  45. S. J. Gibbs, A. Pujol, T. S. Chen, A. W. Malcolm and A. E. James, 'Monte-Carlo Computation of Patient Risk from Dental Radiography,' Investigative Radiology, 20, S23 (1985) https://doi.org/10.1097/00004424-198509000-00118
  46. G. Williams, M. Zankl, W. Abmayr, R. Veit and G. Drexler, 'The Calculation of Dose from External Photon Exposures Using Reference and Realistic Human Phantoms and Monte-Carlo Methods,' Phys. Med. Biol., 31, 449 (1986) https://doi.org/10.1088/0031-9155/31/4/010
  47. R. Veit, M. Zankl, N. Petoussi, E. Mannweiler, G. Williams and G. Drexler, Tomographic Anthropomorphic Models, Part I: Construction Technique and Description of Models of an 8-week-old Baby and a 7-year-old Child, GSF-Report 3/89, GSF-National Research Center for Environment and Health (1989)
  48. M. Zankl, R. Veit, G. Williams, K. Schneider, H. Fendel, N. Petoussi and G. Drexler, 'The Construction of Computer Tomographic Phantoms and Their Application in Radiology and Radiation Protection,' Radiat. Environ. Biophys., 27, 153 (1988) https://doi.org/10.1007/BF01214605
  49. R. Veit, W. Panzer, M. Zankl and C. Scheurer, 'Vergleich berechneter und gemessener Dosen an einem anthropomorphen Phantom,' Z. Med. Phys., 2, 123 (1992) https://doi.org/10.1016/S0939-3889(15)70587-8
  50. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi and P. B. Hoffer, 'Computerized 3-Dimensional Segmented Human Anatomy,' Medical Physics, 21, 299 (1994) https://doi.org/10.1118/1.597290
  51. T. W. Dawson, K. Caputa and M. A. Stuchly, 'A comparison of 60 Hz uniform magnetic and electric induction in the human body,' Phys. Med. Biol., 42, 2319 (1997) https://doi.org/10.1088/0031-9155/42/12/001
  52. V. M. Spitzer, D. G. Whitlock and National Library of Medicine (U.S.), Atlas of the Visible Human Male : Reverse Engineering of the Human Body, Jones and Bartlett, Sudbury, Mass. (1998)
  53. I. G. Zubal, The Zubal Phantom:http://noodle.med.yale.edu/zubal/
  54. I. G. Zubal and C. R. Harrell, 'Voxel-Based Monte-Carlo Calculations of Nuclear-Medicine Images and Applied Variance Reduction Techniques,' Image and Vision Computing, 10, 342 (1992) https://doi.org/10.1016/0262-8856(92)90020-4
  55. M. G. Stabin and H. Yoriyaz, 'Photon specific absorbed fractions calculated in the trunk of an adult male voxelbased phantom,' Health Physics, 82, 21 (2002) https://doi.org/10.1097/00004032-200201000-00005
  56. H. Yoriyaz, A. dos Santos, M. G. Stabin and R. Cabezas, 'Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code,' Medical Physics, 27, 1555 (2000) https://doi.org/10.1118/1.599021
  57. H. Yoriyaz, M. G. Stabin and A. dos Santos, 'Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry,' J. Nucl. Med., 42, 662 (2001)
  58. S. Chiavassa, M. Bardies, F. Guiraud-Vitaux, D. Bruel, J. R. Jourdain, D. Franck and I. Aubineau-Laniece, 'OEDIPE:A personalized dosimetric tool associating voxel-based models with MCNPX,' Cancer Biotherapy and Radiopharmaceuticals, 20, 325 (2005) https://doi.org/10.1089/cbr.2005.20.325
  59. S. Chiavassa, A. Lemosquet, I. Aubineau-Laniece, L. de Carlan, I. Clairand, L. Ferrer, M. Bardies, D. Franck and M. Zankl, 'Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources,' Radiation Protection Dosimetry, 116, 631 (2005) https://doi.org/10.1093/rpd/nci063
  60. D. R. Dance, G. H. McVey, M. Sandborg, G. A. Carlsson and F. R. Verdun, 'The optimisation of lumbar spine AP radiography using a realistic computer model,' Radiation Protection Dosimetry, 90, 207 (2000) https://doi.org/10.1093/oxfordjournals.rpd.a033120
  61. R. Kramer, J. W. Vieira, H. J. Khoury, F. R. A. Lima and D. Fuelle, 'All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry,' Phys. Med. Biol., 48, 1239 (2003) https://doi.org/10.1088/0031-9155/48/10/301
  62. P. J. Dimbylow, 'The development of realistic voxel phantoms for electromagnetic field dosimetry,' In Proceedings of Int. Workshop on Voxel Phantom Development, Chilton, UK, 1995
  63. P. J. Dimbylow, 'FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz,' Phys. Med. Biol., 42, 479 (1997) https://doi.org/10.1088/0031-9155/42/3/003
  64. J. G. Hunt, I. Malatova and S. Foltanova, 'Calculation and measurement of calibration factors for bone surface seeking low energy gamma emitters and determination of Am-241 activity in a real case of internal contamination,' Radiation Protection Dosimetry, 82, 215 (1999) https://doi.org/10.1093/oxfordjournals.rpd.a032627
  65. J. G. Hunt, I. Malatova, S. Foltanova and B. M. Dantas, 'Calibration of in vivo measurement systems using a voxel phantom and the Monte Carlo technique,' Radiation Protection Dosimetry, 89, 283 (2000) https://doi.org/10.1093/oxfordjournals.rpd.a033081
  66. P. J. Dimbylow, 'Induced current densities from lowfrequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body,' Phys. Med. Biol., 43, 221 (1998) https://doi.org/10.1088/0031-9155/43/2/001
  67. P. J. Dimbylow, 'Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz,' Phys. Med Biol., 47, 2835 (2002) https://doi.org/10.1088/0031-9155/47/16/301
  68. D. G. Jones, 'Area listic anthropomorphic phantom for calculating organ doses arising from external photon irradiation,' Radiation Protection Dosimetry, 72, 21 (1997) https://doi.org/10.1093/oxfordjournals.rpd.a032072
  69. D. G. Jones, 'A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters,' Radiation Protection Dosimetry, 79, 411 (1998) https://doi.org/10.1093/oxfordjournals.rpd.a032439
  70. P. Ferrari and G. Gualdrini, 'An improved MCNP version of the NORMAN voxel phantom for dosimetry studies,' Phys. Med. Biol., 50, 4299 (2005) https://doi.org/10.1088/0031-9155/50/18/005
  71. International Commission on Radiological Protection, Recommendation of the International Commission on Radiological Protection, ICRP DRAFT 2005(2005)
  72. R. P. Findlay and P. J. Dimbylow, 'Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body,' Phys. Med. Biol., 50, 3825 (2005) https://doi.org/10.1088/0031-9155/50/16/011
  73. P. Dimbylow, 'Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields,' Phys. Med. Biol., 50, 1047 (2005) https://doi.org/10.1088/0031-9155/50/6/002
  74. P. Dimbylow, 'Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI,' Phys. Med. Biol., 50, 4053 (2005) https://doi.org/10.1088/0031-9155/50/17/009
  75. X. G. Xu, T. C. Chao and A. Bozkurt, 'VIP-man: An image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations,' Health Physics, 78, 476 (2000) https://doi.org/10.1097/00004032-200005000-00003
  76. T. C. Chao and X. G. Xu, 'Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters,' Phys. Med. Biol., 46, 901 (2001) https://doi.org/10.1088/0031-9155/46/4/301
  77. A. Bozkurt, T. C. Chao and X. G. Xu, 'Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-Man anatomical model,' Phys. Med. Biol., 45, 3059 (2000) https://doi.org/10.1088/0031-9155/45/10/321
  78. A. Bozkurt, T. C. Chao and X. G. Xu, 'Fluence-to-dose conversion coefficients based on the VIP-MAN anatomical model and MCNPX code for monoenergetic neutrons above 20 MeV,' Health Physics, 81, 184 (2001) https://doi.org/10.1097/00004032-200108000-00011
  79. A. Bozkurt and X. G. Xu, 'Fluence-to-dose conversion coefficients for monoenergetic proton beams based on the VIP-Man anatomical model,' Radiation Protection Dosimetry, 112, 219 (2004) https://doi.org/10.1093/rpd/nch393
  80. T. C. Chao, A. Bozkurt and X. G. Xu, 'Organ dose conversion coefficients for 0.1-10 MeV electrons calculated for the VIP-MAN tomographic model,' Health Physics, 81, 203 (2001) https://doi.org/10.1097/00004032-200108000-00012
  81. T. C. Chao and X. G. Xu, 'S-values calculated from a tomographic head/brain model for brain imaging,' Physics in Medicine and Biology, 49, 4971 (2004) https://doi.org/10.1088/0031-9155/49/21/009
  82. C. Y. Shi and X. G. Xu, 'Development of a 30-weekpregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations,' Medical Physics, 31, 2491 (2004) https://doi.org/10.1118/1.1778836
  83. C. Y. Shi, X. G. Xu and M. G. Stabin, 'Specific absorbed fractions for internal photon emitters calculated for a tomographic model of a pregnant woman,' Health Physics, 87, 507 (2004) https://doi.org/10.1097/01.HP.0000133364.55155.09
  84. N. Petoussi-Henss, M. Zankl, U. Fill and D. Regulla, 'The GSF family of voxel phantoms,' Phys. Med. Biol., 47, 89 (2002) https://doi.org/10.1088/0031-9155/47/1/307
  85. U. A. Fill, M. Zankl, N. Petoussi-Henss, M. Siebert and D. Regulla, 'Adult female voxel models of different stature and photon conversion coefficients for radiation protection,' Health Physics, 86, 253 (2004) https://doi.org/10.1097/00004032-200403000-00003
  86. R. Kramer, J. W. Vieira, H. J. Khoury and F. D. Lima, 'MAX meets ADAM: a dosimetric comparison between a voxel-based and a mathematical model for external exposure to photons,' Phys. Med. Biol., 49, 887 (2004) https://doi.org/10.1088/0031-9155/49/6/002
  87. R. Kramer, A. M. Santos, C. A. O. Brayner, H. J. Khoury, J. W. Vieira and F. R. A. Lima, 'Application of the MAX/ EGS4 exposure model to the dosimetry of the Yanango radiation accident,' Phys. Med. Biol., 50, 3681 (2005) https://doi.org/10.1088/0031-9155/50/16/003
  88. R. Kramer, H. J. Khoury, J. W. Vieira, E. C. M. Loureiro, V. J. M. Lima, F. R. A. Lima and G. Hoff, 'All about FAX: a female adult voxel phantom for Monte Carlo calculation in radiation protection dosimetry,' Phys. Med. Biol., 49, 5203 (2004) https://doi.org/10.1088/0031-9155/49/23/001
  89. M. Caon, G. Bibbo, and J. Pattison, 'An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations,' Phys. Med. Biol., 44, 2213 (1999) https://doi.org/10.1088/0031-9155/44/9/309
  90. J. Nipper, J. Williams, and W. Bolch, 'Creation of two tomographic voxel models of pediatric patients in the first year of life,' Phys. Med. Biol., 47, 3143 (2002) https://doi.org/10.1088/0031-9155/47/17/307
  91. R. J. Staton, F. D. Pazik, J. C. Nipper, J. L. Williams and W. E. Bolch, 'A comparison of newborn stylized and tomographic models for dose assessment in pediatric radiology,' Phys. Med.Biol., 48, 805 (2003) https://doi.org/10.1088/0031-9155/48/7/301
  92. C. Lee, J. Williams, C. Lee and W. Bolch, 'The UF series of tomographic computational phantoms of pediatric patients,' Medical Physics, 32, 3537 (2005) https://doi.org/10.1118/1.2107067
  93. K. Saito, A. Wittmann, S. Koga, Y. Ida, T. Kamei, J. Funabiki and M. Zankl, 'Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system,' Radiat. Environ. Biophys., 40, 69 (2001) https://doi.org/10.1007/s004110000082
  94. G. Tanaka, Y. Nakahara, and Y. Nakazima, 'Japanese reference man 1988-IV. Studies on the weight and size of internal organs of Normal Japanese,' Nippon Igaku Hoshasen Gakkai Zasshi, 49, 344 (1989)
  95. T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki and Y. Yamanaka, 'Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry,' Phys. Med. Biol., 49, 1 (2004) https://doi.org/10.1088/0031-9155/49/1/001
  96. S. Park, J. Lee, J. I. Kim, Y. J. Lee, Y. K. Lim, C. S. Kim and C. Lee, 'In vivo organ mass of Korean adults obtained from whole body magnetic resonance data,' Radiation Protection Dosimetry, (in press)
  97. S. Park, C. Lee and J. Lee, 'Construction of MIRD-type Korean reference adult male and female phantoms.,' Health Physics, 84, S164 (2003)
  98. K. Biju and P. S. Nagarajan, 'Computed normalized effective doses to an Indian adult in conventional diagnostic X ray chest examinations,' Radiation Protection Dosimetry, 88, 119 (2000) https://doi.org/10.1093/oxfordjournals.rpd.a033028
  99. C. Lee, J. Lee and C. Lee, 'Korean adult male voxel model KORMAN segmented from magnetic resonance images,' Medical Physics, 31, 1017 (2004) https://doi.org/10.1118/1.1689013
  100. C. Lee, C. Lee, S. Park and J. Lee, 'Development of the two Korean adult tomographic computational phantoms for organ dosimetry,' Medical Physics, 33, 380 (2006) https://doi.org/10.1118/1.2161405
  101. T. C. Chao, A. Bozkurt and X. G. Xu, 'Conversion coefficients based on the VIP-MAN anatomical model and EGS4-VLSI code for external monoenergetic photons from 10 keV to 10 MeV,' Health Physics, 81, 163 (2001) https://doi.org/10.1097/00004032-200108000-00010
  102. R. Kramer, H. J. Khoury and J. W. Vieira, 'Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation,' Phys. Med. Biol., 50, 5105 (2005) https://doi.org/10.1088/0031-9155/50/21/011
  103. C. Lee and J. Lee, 'The dosimetric effect of unrealistic arm structure of stylized human model,' Medical Physics, 32, 2100 (2005) https://doi.org/10.1118/1.1998416
  104. M. Zankl, U. Fill, N. Petoussi-Henss and D. Regulla., 'Organ dose conversion coefficients for external photon irradiation of male and female voxel models,' Phys. Med. Biol., 47, 2367 (2002) https://doi.org/10.1088/0031-9155/47/14/301
  105. D. A. Rajon, D. W. Jokisch, P. W. Patton, A. P. Shah, C. J. Watchman and W. E. Bolch, 'Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements,' Phys. Med. Biol., 47, 1741 (2002) https://doi.org/10.1088/0031-9155/47/10/310
  106. D. A. Rajon, P. W. Patton, A. P. Shah, C. J. Watchman and W. E. Bolch, 'Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry,' Medical Physics, 29, 682 (2002) https://doi.org/10.1118/1.1470207
  107. W. P. Segars, D. S. Lalush and B. M. W. Tsui, 'A realistic spline-based dynamic heart phantom,' IEEE Transactions on Nuclear Science, 46, 503 (1999) https://doi.org/10.1109/23.775570
  108. W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson and S. S. Berr, 'Development of a 4-D digital mouse phantom for molecular imaging research,' Molecular Imaging and Biology, 6, 149 (2004) https://doi.org/10.1016/j.mibio.2004.03.002
  109. G. Xu and C. Shi, 'Preliminary development of a 4D anatomical model for Monte Carlo simulation,' In Proceedings of The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, TN, 2005
  110. M. Zankl, and A. Wittmann, 'The adult male voxel model 'Golem' segmented from whole-body CT patient data,' Radiat. Environ. Biophys., 40, 153 (2001) https://doi.org/10.1007/s004110100094
  111. J. C. Nipper, J. L. Williams and W. E. Bolch, 'Creation of two tomographic voxel models of pediatric patients in the first year of life,' Phys. Med. Biol., 47, 3143 (2002) https://doi.org/10.1088/0031-9155/47/17/307
  112. C. Lee, C. Lee and J. Lee, 'Korean adult male voxel model KORMAN segmented from magnetic resonance images,' Medical Physics, 31, 1017 (2004) https://doi.org/10.1118/1.1689013