본 논문에서는 인터넷 컨텐츠 사이트에서 묵시적인 평가정보를 이용한 새로운 사례기반 추천시스템을 설계하고 구현하였다. 본 시스템은 크게 사용자 프로파일 생성 모듈, 유사도 계산 및 추천 모듈, 개인화된 메일링 모듈로 구성된다. 사용자 프로파일 생성 모듈에서는 사용자가 컨텐츠를 이용하면서 남긴 로그 기록을 이용하여 컨텐츠에 대한 개인별 선호도를 추출할 수 있는 속성내, 속성간 가중치를 제시하였다. 유사도 계산 및 추천 모듈에서는 사용자 프로파일과 새로운 컨텐츠간의 유사도를 측정하기 위한 유사도 계산식을 제시하였다. 개인화된 메일링 모듈에서는 개인별 선호도에 의해 구성된 추천 컨텐츠를 플렛폼-독립적인 XML 문서 형식으로 변환하여 발송한다. 제안된 모델에 대한 추천 효율을 검증하기 위해 평균절대오차(MAE)와 반응자작용특성(ROC) 값을 이용하여 제안한 추천 모델과 협동적 필터링 기법과 비교 실험하였다. 실험결과, 본 논문에서 제안한 모델의 추천 효율이 기존의 협동적 필터링 기법보다 우수함을 보였다.
본 연구에서는 ‘대량 맞춤화(Mass Customization)' 트렌드의 부상과 그 맥락을 같이 하여, 텍스타일 분야의 혁명이라 일컬어지는 디지털 텍스타일 프린팅 기술을 기반으로 한 소비자 참여형 의류 디자인 프로세스 모형 두 가지를 제안하고, 기존의 고전적인 디자인 프로세스와 이 모형들 사이의 효율성, 적합성을 비교 고찰함으로써, 대량 맞춤화 시대를 위한 새로운 의류 디자인 프로세스의 가능성을 모색하였다. 20대∼30대 여성을 대상으로 설문조사를 실시한 결과, 전체 응답자들은 선택의 기회를 가장 많이 가질 수 있는 대량 맞춤화형 디자인 프로세스를 가장 선호하였으며, 응답자들은 의류 소재의 디자인 요소 중에서 문양보다는 색채의 영향을 더 많이 받는 것으로 나타났다. 본 연구의 결과를 통하여 획일화되고 대량화된 상품보다는 보다 차별화되고 자신의 요구를 반영한 상품을 선호하는 소비자들의 수요를 발견하였으며 이에 부응하는 디자인 프로세스로의 패러다임 변화에 관한 지표를 얻을 수 있었다.
최근 높은 접근성을 기반으로 다양한 콘텐츠가 양산됨에 따라 미디어 콘텐츠 시장이 더욱 활성화되고 있다. 사용자들은 취향에 맞는 콘텐츠를 찾고자 하며, 각 플랫폼에서 콘텐츠의 개인화 추천을 위해 경쟁하고 있다. 효율적인 추천시스템을 위해서는 양질의 메타데이터가 필요하다. 기존의 플랫폼들은 영상의 메타데이터를 사용자가 직접 입력하는 방식을 취하고 있다. 이는 많은 양의 데이터를 처리하는 데에 시간과 비용을 낭비하게 할 것이다. 본 논문에서는 미디어 초개인화 추천을 위해서 영화예고편을 바탕으로, 영상의 YCrCb 컬러 모델을 기반으로 키프레임을 추출하고, 인공지능의 지도학습을 통해 영화 장르를 구별하고 추후 메타데이터 생성을 위한 활용방안을 제안하고자 한다.
최근 인공지능과 딥러닝 기술은 크게 발전하였으며, 그 중에서도 BERT 모델은 트랜스포머 아키텍처를 기반으로 한 자연어 처리 분야에서 문맥 이해 능력이 뛰어나다는 평가를 받고 있다. 이러한 성능은 전통적인 추천 시스템을 한 단계 더 발전시킬 수 있는 잠재력을 지니고 있다. 본 연구에서는 추천 시스템의 성능 향상을 위해 협업 필터링 방식에 딥러닝 모델을 결합하는 접근 방식을 채택하였다. 구체적으로, BERT를 활용해 사용자 리뷰의 감정 분석을 수행하고, 이러한 리뷰 감정을 기반으로 사용자를 임베딩함으로써 유사한 취향을 가진 사용자를 찾아내어 추천하는 시스템을 구현하였다. 또한 이 과정에서 오픈소스 검색 엔진인 Elasticsearch를 활용하여 빠른 검색, 추천 결과를 검색할 수 있다. 사용자의 텍스트 데이터를 분석하여 추천의 정확도와 개인화 수준을 높이는 접근 방식은 향후 다양한 온라인 서비스에서의 사용자 경험 개선에 중요한 역할을 할 것이다.
최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.
전 세계적으로 약물 부작용은 주요 사망원인의 상위를 차지하고 있다. 약물 부작용에 대해 효과적으로 대응하기 위해, 능동적인 실시간 분석 기반 약물감시 체계로의 전환과 함께 데이터의 표준화와 품질 향상이 필요하다. 이를 위해, 개별 기관의 데이터를 통합하고 대규모 데이터를 활용하여 약물 부작용 예측의 정확도를 높이는 것이 중요하다. 하지만, 각 기관 간의 데이터 공유는 프라이버시 문제를 야기시키고 각기 다른 데이터 표준 구성도 다르다. 본 연구에서는 이 문제를 해결하기 위해, 개인정보보호 법규에 따라 데이터를 직접 공유하지 않고 모델의 학습 결과를 공유하는 연합학습 방식을 채택한다. 각 기관마다 다른 데이터포맷을 Common Data Model(CDM)을 활용하여 데이터 표준화를 수행하고 데이터의 정확성과 일관성을 확립한다. 또한, 클라우드 기반의 연합학습 환경을 구성하여 보안 및 확장 관리에 효율성을 높이는 약물감시 시스템을 제안한다. 이를 통해 기관 간 데이터의 프라이버시를 보호하면서도, 효과적인 의약품 부작용 모니터링과 예측이 가능하다. 약물 부작용으로 인한 사망률 감소와 의료비용 절감을 목표로 하며, 이를 실현하기 위한 다양한 기술적 접근과 방법론을 탐구한다.
폭발적으로 성장하고 있는 웹은 수백만 개의 웹 문서를 포함하고 있기 때문에, 적절한 웹사이트를 찾기 어렵다. 사용자 프로파일을 사용하여 적절한 웹사이트를 추천함으로써 웹의 탐색을 개인화 할 수도 있지만 웹 컨텐츠에 대한 사용자의 평가는 사용자의 성격에 관한 다양한 측면을 표현하므로 사용자의 선호도를 예측하기 위해서는 보다 효과적인 방법이 필요하다. 사용자 프로파일은 비선형적인 특성을 가지고 있으므로 분류기를 사용하여 예측하여야 하며 다양한 특성을 예측하기 위해 분류기의 결합이 필요하다. 패턴분류와 시각화에 유용한 구조적응 자기구성지도(SASOM)는 개선된 SOM 모델로서 웹 마이닝에 적절하다. 퍼지 적분은 주관적으로 정의된 분류기의 중요도를 이용하여 결합하는 방법이다. 본 논문에서는 독립적으로 학습된 SASOM의 퍼지적분(fuzzy integral)기반 결합을 이용하여 사용자의 프로파일을 예측하고 UCI 벤치마크 데이타인 Syskill & Webert 데이타를 사용하여 그 성능을 평가한다. 실험결과 제안한 방법이 기존의 naive Bayes 분류기뿐만 아니라 SASOM의 투표결합보다 우수한 성능을 보였다.
본 연구를 통하여 스마트 환경에서 고객 맞춤 및 서비스가 지향하는 개인화 방향성에 대해 고찰 하였다, 또한 스마트 환경은 산업구조를 공급자 중심에서 소비자 중심으로, 제품 생산 중심의 제조업에서 서비스와 마케팅이 융 복합된 서비스업으로 변화하고 있다는 측면도 살펴보았다. 가치 창출의 구조가 바뀜으로써 기업 전반에서도 새로운 비즈니스 모델 창출로 인한 차별화된 경쟁력을 갖추기 위해 고객의 니즈에 중요한 가치를 두고 있다. 고객 맞춤 및 서비스의 핵심 이슈는 대량 체제에서 가능한 저렴한 비용을 유지하면서 어떻게 고객이 원하는 다양한 제품을 공급할 수 있느냐는 것이다. 본 논문에서는 스마트환경에서 고객맞춤 제품 및 서비스를 지향하는 기업들이 필요로 하는 신제품 개발 전략으로 크라우드 소싱 마케팅, 디지털 체험 기술, 추천 시스템, 3D 프린팅 기술, 유연 생산 시스템, UX(User eXperience)의 관점의 PSS(Product-Service Systems)을 제안한다.
현대사회에서 추천 서비스는 클라이언트-서버 기반의 인터넷 서비스에서 소셜 네트워킹으로 변화되고 있다. 특히 최근에는 크라우드소싱과 소셜 네트워킹을 통하여 사용자에게 개인화 추천을 서비스하고 있다. 소셜 네트워크 기반 시스템은 메모리와 모델 기반 협력적 필터링을 이용한 추천 서비스 제공 방식과 목적에 따라 분류할 수 있다. 이에 본 논문에서는 소셜 네트워크 기반의 {사용자-연관 디자인} 행렬을 이용한 감성 디자인 추천을 제안한다. 제안하는 방법은 소셜 네트워크 기반에서 {사용자-연관 디자인} 행렬을 구성하고 메모리 기반 협력적 필터링을 이용하여 감성 디자인을 추천한다. 제안한 방법의 성능평가는 정확도와 재현율 검증을 진행한다. 정확도의 검증은 소셜 네트워크 기반의 추천 적용유무에 따른 F-measure를 사용한다.
연 본 연구는 초등학생들의 디지털교과서 사용의도에 관한 영향요인을 분석하는 것으로, 연구결과는, 첫째, 신기술수용의 관점에서 디지털교과서 품질특성이 사용용이성, 사용유용성, 사용의도에 유의한 영향을 미치는 것으로 나타났으며, 디지털교과서 품질특성이 우수할수록 사용용이성, 사용유용성, 사용의도가 높아지는 것으로 나타났다. 둘째, 디지털교과서 사용용이성은 사용유용성에, 사용유용성은 사용의도에 유의한 영향을 미치는 것으로 나타났다. 또한, 본 연구를 통해서 초등학생들이 지각하는 디지털교과서 품질특성으로 개인화, 이동성, 안정성, 정확성, 응답성, 접근성 순으로 6개의 중요 요인이 도출되었으며, 이러한 연구결과는 학습자의 사용의도를 높이는 디지털교과서 콘텐츠 및 시스템 개발에 시사점을 제공한다는 점에서 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.