• Title/Summary/Keyword: Periodic problems

Search Result 269, Processing Time 0.022 seconds

Solution of periodic notch problems in an infinite plate using BIE in conjunction with remainder estimation technique

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.619-631
    • /
    • 2011
  • This paper provides a complex variable BIE for solving the periodic notch problems in plane plasticity. There is no limitation for the configuration of notches. For the periodic notch problem, the remainder estimation technique is suggested. In the technique, the influences on the central notch from many neighboring notches are evaluated exactly. The influences on the central notch from many remote notches are approximated by one term with a multiplying factor. This technique provides an effective way to solve the problems of periodic structures. Several numerical examples are presented, and most of them have not been reported previously.

MULTIPLE PERIODIC SOLUTIONS FOR EIGENVALUE PROBLEMS WITH A p-LAPLACIAN AND NON-SMOOTH POTENTIAL

  • Zhang, Guoqing;Liu, Sanyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.213-221
    • /
    • 2011
  • In this paper, we establish a multiple critical points theorem for a one-parameter family of non-smooth functionals. The obtained result is then exploited to prove a multiplicity result for a class of periodic eigenvalue problems driven by the p-Laplacian and with a non-smooth potential. Under suitable assumptions, we locate an open subinterval of the eigenvalue.

ON PERIODIC BOUNDARY VALUE PROBLEMS OF HIGHER ORDER NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH p-LAPLACIAN

  • Liu, Yuji;Liu, Xingyuan
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.29-40
    • /
    • 2009
  • Motivated by [Linear Algebra and its Appl. 420(2007), 218-227] and [Linear Algebra and its Appl. 425(2007), 171-183], we, in this paper, study the solvability of periodic boundary value problems of higher order nonlinear functional difference equations with p-Laplacian. Sufficient conditions for the existence of at least one solution of this problem are established.

Numerical Simulation of Periodic and Oscillatory Problems by Using RK-Butcher Algorithms (RK-Butcher알고리듬의 사용에 의한 주기적 진동 문제의 수치적 시뮬레이션)

  • Park, Dae-Chul;Gopal, Devarajan;Murugesh, V.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.82-88
    • /
    • 2008
  • In this paper, Runge-Kutta (RK)-Butcher algorithm is proposed to study the periodic and oscillatory problems. Simulation results obtained using RK-Butcher algorithms and the classical fourth order Runge-Kutta (RK(4)) methods are compared with the exact solutions of a few periodic and oscillatory problems to confirm the performance of the proposed algorithm. The simulation results from RK-Butcher algorithms are always found to be very close to the exact solutions of these problems. Further, it is found that the RK-Butcher algorithm is superior when compared to RK(4) methods in terms of accuracy. The RK-Butcher algorithm can be easily implemented in a programming language and a more accurate solution may be obtained for any length of time. RK-Butcher algorithm is applicable as a good numerical algorithm for studying the problems of orbit and two body as it gives the nearly identical solutions.

  • PDF

THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

  • Li, Jiao-Fen;Hu, Xi-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.569-582
    • /
    • 2010
  • The following "Periodic Jacobi Procrustes" problem is studied: find the Periodic Jacobi matrix X which minimizes the Frobenius (or Euclidean) norm of AX - B, with A and B as given rectangular matrices. The class of Procrustes problems has many application in the biological, physical and social sciences just as in the investigation of elastic structures. The different problems are obtained varying the structure of the matrices belonging to the feasible set. Higham has solved the orthogonal, the symmetric and the positive definite cases. Andersson and Elfving have studied the symmetric positive semidefinite case and the (symmetric) elementwise nonnegative case. In this contribution, we extend and develop these research, however, in a relatively simple way. Numerical difficulties are discussed and illustrated by examples.

Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames

  • Chung, Hee-Taeg;Kang, Shin-Hyun;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.171-180
    • /
    • 2005
  • We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.

APPLICATION OF CONTRACTION MAPPING PRINCIPLE IN PERIODIC BOUNDARY VALUE PROBLEMS

  • Amrish Handa
    • The Pure and Applied Mathematics
    • /
    • v.30 no.3
    • /
    • pp.289-307
    • /
    • 2023
  • We prove some common fixed point theorems for β-non-decreasing mappings under contraction mapping principle on partially ordered metric spaces. We study the existence of solution for periodic boundary value problems and also give an example to show the degree of validity of our hypothesis. Our results improve and generalize various known results.

Assumed strain finite strip method using the non-periodic B-spline

  • Hong, Hyun-Seok;Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

Statistical Approach to Analyze Vibration Localization Phenomena in Periodic Structural Systems

  • Shin Sang Ha;Lee Se Jung;Yoo Hong Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1405-1413
    • /
    • 2005
  • Malfunctions or critical fatigue problems often occur in mistuned periodic structural systems since their vibration responses may become much larger than those of perfectly tuned periodic systems. These are called vibration localization phenomena and it is of great importance to accurately predict the localization phenomena for safe and reliable designs of the periodic structural systems. In this study, a simple discrete system which represents periodic structural systems is employed to analyze the vibration localization phenomena. The statistical effects of mistuning, stiffness coupling, and damping on the vibration localization phenomena are investigated through Monte Carlo simulation. It is found that the probability of vibration localization was significantly influenced by the statistical properties except the standard deviation of coupling stiffness.

MULTIPLE POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS WITH IMPULSE

  • Song, Xiaohua;Zhao, Zengqin;Wang, Xin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.875-883
    • /
    • 2009
  • At least two positive solutions of a first-order periodic boundary value problem with impulse are obtained by establishing a new cone and the theorem of fixed point index. And at the end of this paper we give an example to illustrate the application of our main results.

  • PDF