References
- S.A. Al-Mezel, H. Alsulami, E. Karapinar & A. Roldan: Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal. 2014 (2014), Article ID 287492. https://doi.org/10.1155/2014/287492
- A. Alotaibi & S.M. Alsulami: Coupled coincidence points for monotone operators in partially ordered metric spaces. Fixed Point Theory Appl. 2011 (2011), Paper No. 44. https://doi.org/10.1186/1687-1812-2011-44
- S.M. Alsulami: Some coupled coincidence point theorems for a mixed monotone operator in a complete metric space endowed with a partial order by using altering distance functions. Fixed Point Theory Appl. 2013 (2013), Paper No. 194. https://doi.org/10.1186/1687-1812-2013-194
- T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
- B.S. Choudhury, N. Metiya & M. Postolache: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013 (2013), Paper No. 152. https://doi.org/10.1186/1687-1812-2013-152
- B. Deshpande & A. Handa: Coincidence point results for weak ψ - ϕ contraction on partially ordered metric spaces with application. Facta Universitatis Ser. Math. Inform. 30 (2015), no. 5, 623-648.
- B. Deshpande, A. Handa & C. Kothari: Existence of coincidence point under generalized nonlinear contraction on partially ordered metric spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 23 (2016), no. 1, 35-51. http://dx.doi.org/10.7468/jksmeb.2016.23.1.35
- B. Deshpande, A. Handa & S.A. Thoker: Existence of coincidence point under generalized nonlinear contraction with applications. East Asian Math. J. 32 (2016), no. 3, 333-354. http://dx.doi.org/10.7858/eamj.2016.025
- B. Deshpande & A. Handa: On coincidence point theorem for new contractive condition with application. Facta Universitatis Ser. Math. Inform. 32 (2017), no. 2, 209-229. https://doi.org/10.22190/FUMI1702209D
- I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014 (2014), Paper No. 207. http://dx.doi.org/10.1186/1687-1812-2014-207
- D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
- A. Handa: Multidimensional coincidence point results for contraction mapping principle. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 26 (2019), no. 4, 277-288. https://doi.org/10.7468/jksmeb.2019.26.4.277
- A. Handa: Utilizing isotone mappings under Mizoguchi-Takahashi contraction to prove multidimensional fixed point theorems with application. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 26 (2019), no. 4, 289-303. https://doi.org/10.7468/jksmeb.2019.26.4.289
- A. Handa: Existence of coincidence point under generalized Geraghty-type contraction with application. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 27 (2020), no. 3, 109-124. https://doi.org/10.7468/jksmeb.2020.27.3.109
- A. Handa: Multidimensional fixed point results for contraction mapping principle with application. Facta Univ. Ser. 35 (2020), no. 4, 919-928. https://doi.org/10.22190/FUMI2004919H
- J. Harjani, B. Lopez & K. Sadarangani: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. 74 (2011), 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
- J. Harjani & K. Sadarangani: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 72 (2010), 1188-1197. https://doi.org/10.1016/j.na.2009.08.003
- G. Jungck: compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. https://doi.org/10.1155/S0161171286000935
- G. Jungck & B.E. Rhoades: Fixed point for set-valued functions without continuity. Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
- V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- N.V. Luong & N.X. Thuan: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
- J.J. Nieto & R. Rodriguez-Lopez: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5
- A.C.M. Ran & M.C.B. Reurings: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- A. Razani & V. Parvaneh, Coupled coincidence point results for (ψ, α, β)-weak contractions in partially ordered metric spaces. J. Appl. Math. 2012, Article ID 496103. https://doi.org/10.1155/2012/496103
- B. Samet, E. Karapinar, H. Aydi & V.C. Rajic: Discussion on some coupled fixed point theorems. Fixed Point Theory Appl. 2013 (2013), Paper No. 50. https://doi.org/10.1186/1687-1812-2013-50
- F. Shaddad, M.S.M. Noorani, S.M. Alsulami & H. Akhadkulov: Coupled point results in partially ordered metric spaces without compatibility. Fixed Point Theory Appl. 2014 (2014), Paper No. 204. https://doi.org/10.1186/1687-1812-2014-204
- Y. Su: Contraction mapping principle with generalized altering distance function in ordered metric spaces and applications to ordinary differential equations. Fixed Point Theory Appl. 2014 (2014), Paper No. 227. https://doi.org/10.1186/1687-1812-2014-227