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Abstract

In this paper, Runge-Kutta (RK)-Butcher algorithm is proposed to study the periodic and oscillatory
problems. Simulation results obtained using RK-Butcher algorithms and the classical fourth order
Runge-Kutta (RK(4)) methods are compared with the exact solutions of a few periodic and oscillatory
problems to confirm the performance of the proposed algorithm. The simulation results from RK-Butcher
algorithms are always found to be very close to the exact solutions of these problems. Further, it is found
that the RK-Butcher algorithm is superior when compared to RK(4) methods in terms of accuracy. The
RK-Butcher algorithm can be easily implemented in a programming language and a more accurate solution
may be obtained for any length of time. RK-Butcher algorithm is applicable as a good numerical algorithm
for studying the problems of orbit and two body as it gives the nearly identical solutions.

Keywords : Periodic problems, Oscillatory problems, RK(4) - method and RK-Butcher Algorithms

l. Introduction

Although the RK method was introduced at the

Runge-Kutta methods have been used by many o ) . -
beginning of the twentieth century, research in this

researchers [1-6] to determine numerical solutions for

problems, which are modeled as initial value problems area is still very active and its applications are

(IVPs) involving differential equations that arise in enormous because of its extending accuracy in the

the fields of science and engineering. determination of approximate solutions and its

flexibility.
* Dept. of Information and Communication Engineering, RK methods have become very popular, both as
Hannam University, computational techniques and research applications [1,
*+ Dept. of _I)igitfil Information and Communication, 7-8]. The developed algorithms was used to solve
%%ngg’{gz%gl;’ff_‘g A% AR : 2007, 9. 5 differential equations efficiently and yet provide the
A g8 : 2008, 1. 24 equivalent of approximating the exact solutions by

matching in terms of the Taylor series expansion.
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RK algorithms have always been considered to be

excellent tools for the numerical integration of

differential equations (ODEs). ,

Butcher [2] derived the best RK pair, together
with an error estimate, and this is known as the
RK-Butcher algorithm. It is nominally considered to
be sixth order since it six  function
evaluations (it looks like a sixth-order method but in
fact is a fifth-order method). In practice, the ‘working
order’ is close to 5(fifth order), but accuracy of the
results obtained exceeds all other algorithms
examined, including RK-Fehlberg, RK-centroidal mean
(RKCeM) and RK-arithmetic mean (RKAM) methods.

These two algorithms are efficient for singular
system problems which we encounter in Science and
Engineering. Hence we have chosen RK(4) and
RK-Butcher Algorithms for comparison purposes.
Though these two algorithms do exist, here the
emphasis is finding a suitable application in the field
of Science and Engineering. Accordingly, we have
identified a problem where these algorithms are

requires

elegant and efficient in the sense of implementation
and error analysis. Murugesh and Murugesan [9-10]
introduced the RK-Butcher algorithm in Raster and
Time-multiplexing CNN simulations. Recently,
Devarajan et al. [4] used the RK-Butcher algorithm
for finding the numerical solution of an industrial robot
arm control problem.

In this article, we introduce the first and foremost
advantages of RK-Butcher Algorithm which is
converging to the near exact solution with more
accuracy when applied the RK-Butcher algorithm to

study the periodic and oscillatory problems.

Il. RK-Butcher algorithms

The normal order of RK algorithm is the
approximate number of leading terms of an infinite
Taylor series which calculates the trajectory of a
moving point [7]. The remainder of the infinite sum,
which is excluded, is referred to as the local
truncation error (LTE). These RK algorithms are
forward-looking predictors, ie. they do not use any
information from preceding steps to predict the future
position of a point. For this reason, they require a
minimum of input data and consequently are very
simple to program and use.

The general p-stage Runge-Kutta method for

ordinary

solving an IVP is
y = flay) 1

with the initial condition y(:vo) =Yy defined by

p
Yn+1 = Yn +h Ebzkz

i=1
where

p
ki :f $n+cih7y71,+h2aijkj 1= 1,2735"'7;0
i=1
and

p
¢ = Zaij’i: 1,2,--,p
=

In the preceding equations ¢ and b are .
p-dimensional vectors and A(aij is a pXp matrix.

Then the Butcher array takes the form of the lower
triangular matrix:
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5 order predictor of the RK-Butcher algorithm is
1

Ynt1=Yn T %(7161 + 32k, + 12k, + 32k, + Tkg)

4™ order predictor of the RK-Butcher algorithm is

* 1
Yn+1 = Yn + _G—(kl +4k4+k6)

The local truncation error estimate (EE) is

EE= Yn+1 " Yn+a

Ill. NUMERICAL SIMULATION

In this section, we introduce the RK-Butcher
algorithm to four different problems discussed by
Simos and Aguiar [12]. The first is an inhomogeneous
problem, the second is the nonlinear undamped
Duffing’s equation, the third is an ‘almost’ periodic
orbit problem and finally the fourth one is a
well-known two-body problem.

Even if the exact solution is not available, we
are evaluating these two algorithms (RK(4) and
RK-Butcher Algorithm) for comparison purposes.
However the exact solution does exist even for
singular system problems. Hence comparing
these two algorithms with reference to the exact

solution is being carried out.
3.1 Inhomogeneous equation

Consider the following problem

”

y =-— 100y +99sinz 3)

with initial condition ¥(0)=1and y (0)=11.
Its analytical (exact) solution is obtained by

y(x) = cos(10z) + sin(10z) + sinz (4)

Equation (3) has been solved numerically using the
classical fourth order Runge-Kutta method RK{(4) and

RK-Butcher algorithm. The simulation results (with
step size 0.1 sec) along with the exact solutions (from
equation (4)) are presented in Table 1 along with the
absolute errors calculated between them. This result
reveals the superiority of the RK-Butcher algorithm
with less complexity in implementation, at the same
time the error reduction is 1000 times less than that
of the RK(4) method.

Table 1. Simulation results for the inhomogeneous equation

at various values of "x".

Seqa.| x Simulation results : y
No | (sec) [Exact  |RK(M4)  |RK() |RK- RK-
Solutions [Solutions |Error [Butcher |Butche
Solutions
Error

1 0.0 1.0000000f 1.0000000| 0.0000] 1.0000000f OE-07
2 0.1 14816067] 1.4817067| 1E-04 1.4816067] 0E-07
3 0.2[ 06918199] 06920199| 0.0002f 0.6918200] 1E-07
4 0.3 -05533524| -05536524| 0.0003f -0.5533525{ 1E-07
5 0.4 -1.0210278] -1.0214278| 0.0004f -1.0210279} 1E-07
6 05| -0.1958365] -0.1963365] 0.0005| -0.1958368( 3E-07
7 06| 12453975f 12459975 0.0006] 1.2453978f 3E-07
8 0.7] 20551066 2.0558066] 0.0007 2.05510698] 3E-07
9 0.8} 15612134] 15620134} 0.0008 15612137 3E-07
10 09 02843139 02852139} 0.0009] 0.2843144 5E-07
11 10| -05416219| -05426219] 0.0010] -0.5416224| SE-07
12 1.1} -0.1043556| -0.1054556f 0.0011] -0.1043561| S5E-07
13 12| 1.2393225| 1.2405225] 0.0012{ 1.2393232| 7E-07
14 1.3] 22911729 2.2924729) 0.0013 2.2911736| T7E-07
15 14| 21127925| 2.1141925; 0.0014 2.1127932] TE-07
16 15| 08880915 0.8895915( 0.0015f 088809221 7E-07
17 1.6| 02459909} -0.2475909 0.0016| -0.2459919| 1E-06
18 1.7 —0.2448940| -0.2465940 0.0017| -0.2448950| 1E-06
19 1.8] 08831813} 0.8849813| 0.0018| 0.8831823} 1E-06
20 19 20848346 2.0867846] 0.0019 2.0848857} 1.1E-06
21 2.0] 22303235 2.2323235] 0.0020 2.2303247] 1.2E-06

3.2 Duffing’s equation
Consider the nonlinear undamped Duffing equation
y’,+y+y3 = Bcos(wz) (5)

where B = 0.002 and @ = 1.01 The analytical solution

of the above equation is given by

3
ylz)= Y] Ay, cos[(2i+ 1)wz] ©)
1= 0

=

where A4; =0.200179477536, A, = 0.246946143 < 10 *
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A5 =0.304016x10"°%  and

Equation (5) has been solved numerically with
boundary conditions of the form

A; =0.374%x10"°

y(0)=A,+ A;+ A+ A,y (0)=0

The simulation results obtained (with step size 1
sec) using the RK-Butcher algorithm and the RK(4)
methods along with exact solutions(from equation (6))
and absolute errors calculated between them are
presented in Table 2. It is inferred that the
RK-Butcher algorithm gives better solution for the
nonlinear undamped Duffing’s equation when compared
to RK(4).

Table 2. Simulation results for the Duffing’s equation

at various values of "x"

Seq.| x Simulation results: y
No | (sec) lpact  |RK@  |RK(@) |RK- RK-
Solutions |[Solutions |Error |Butcher Butcher
Solutions  |Error
1 0.0] 0.2004294] 0.2004294] OE-07 0.2004294 0E-07
2 1.0] 03066526 0.3066526] OE-07 0.3066526 0E-07
3 2.0{ 0.2199634] 0.2200634] 1E-04 0.2199634 0E-07
4 3.0] 00207932} 0.0209932]| 0.0002 0.0207932 0E-07
5 4.0{ -0.1036664| -0.1039664| 0.0003| -0.1036664 0E-07
6 5.0 -0.0375666| -0.0379666] 0.0004| -0.0375667 1E-07
7 6.0] 0.1578427F 0.1583427| 0.0005 0.1578428 1E-07
8 701 0.2990128] 0.2996128| 0.0006 0.2990129 1E-07
9 8.0 0.2543050| 0.2550050| 0.0007 0.2543051 1E-07
10 9.0] 0.0651066| 0.0659066| 0.0008 0.0651069 3E-07
11 10.0] -0.0919355| -0.0928355| 0.0009 -0.0919358 3E-07

3.3 An orbit problem

Consider a (nearly) ‘almost’ periodic orbit problem
studied by Stiefel and Bettis [11]. That is

z +2=0.001e”, 2(0) = 1,2 (0) = 0.995i,2& C' (7)
The analytical solution for this is given by
2z)=ulz)+iv(z), u,vE R where
ulx) = cosz +0.0005x sinz (8)
v(z)= sinz — 0.0005zcosz

The true solution in equation (8) represents a

orbit
complex plane. Rewriting the equation (7)

perturbational motion on a circular in the
in the

following equivalent form

u +u=0.001cosz, u(0) = 1L,u (0) =0, ©)
v +v=0.001sinz, v(0)=0,v (0) = 0.9995

Now, equation (9) has been solved numerically
using the classical fourth order Runge-Kutta method
and the RK-Butcher algorithm. The simulation results
(with step size O.dsec) along with exact solutions
(from equation(8)) and the absolute errors computed
between them are presented in Table 3. From Table 3
to Table 5 it is found that RK-Butcher algorithm
works very well ( with negligible error upto 7 decimal
places) when compared to RK(4) method which yields
a little bigger error.

Table 3. Simulation results for an orbit problem at various

values of "x"

12|  11.0] -0.0682613| -0.0692613] 0.001| -0.06826136] 6E-08
13 12| 01123593] 01134593 0.0011| 0.11235938] 8E-08 Seq.| x
14| 13| o2815429] o02827429] 00012| 02815434] SE-07 No | (sec) Simulation results: u
15 14] 02809778 0.2822778] 0.0013] 02809783]  5E-07
Exact RK(4) RK(4) |RK- RK-
16 15| 01111868 01125868 0.0014] 0.1111875] 7E-07 . .
Solutions |[Solutions |Error |Butcher |Butcher
17 16| -0.0689371 -0.0704371] 00015] -00689377] 6E-07 .
Solutions |Error
18 17| -0.0905881| -0.0921881] 0.0016| -0.0905888| 8E-07 1 00|  1.0000000] 1.0000000 ol  1.0000000 0E-07
19 18] 00662643 0.0679643] 0.0017| 0.0662653| 1E-06 2| 01| 09950091 09950092 1E-07| 09950001 OE-07
20 19| 02550834 0.2568834] 0.0018] 02550844] 1E-06 3 02| 09800864| 09800865 1E-07| 009800864 OE-07
21 20| 02986884| 03000884| 0.0014] 02986894] 1E-06 4] 03| 09553807| 09553808 1E-07| 0.0553807] OE-07
5/ 04 09211383 092113%9] 1E-07| 09211388 OE-07
6] 05| 08777024| 08777025] 1E-07| 08777024] O0E-07
7| 06| 08255050] 08255053| 3E-07| 0.8255050]  OE-07
8 07| 07650676 07650679 3E-07| 0.7650676] OE-07
o 08| 06969935 06969938 3E-07] 06969935 OE-07
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10 09 0621923 06219626] 3E-07] 06219623 OE-07 1] 00| 1.0000000] 1.0000000] OE-07] 1.0000000] OE-07
1| 10[ 05407229] 05407234] 5E-07] 05407229] OE-07 ol 01| 09999999] 1.0000000] -1E-07| 09999999] OE-07
12) L1} 04540861 04540866 SE-07) 04540861 OE-07 3| 02| 09999999 10000000 -1E-07] 09999999 O0B-07
13 12| 03620168 03620173 5E-07] 0.3629168]  0E-07
4| 03| 09999998] 1.0000000] -2E-07] 09999998]  OE-07
14] 13| 02681249 02681256 7E-07| 02681249] OE-07
15| 14| o1706567] 01706574] 7E-07] 01706567  0E-07 5| 04) 09999995 10000000 -1E-07) 0999999  OE-07
16] 15| 0.0714850] 00714857 7E-07] 00714850] OE-07 6] 05 00999999 10000002 -3E-07| 09999999  0E-07
17| 16| -0.0284001| -0.0284011] 1E-06| -0.0284001] OE-07 71 08| 09999999 1.0000004] -5E-07| 099989%9]  OE-07
18] 17 -0.1280018] -0.1280028| 1E-06| 01280018 0E-07 gl 071 100000001 1.0000004] —4E-07] 1.0000000]  OE-07
19| 18] -0.2263259] -0.2263260] 1E-07] -0.2263%59] OE-07 o o8l 099999991 Tooo000al B0 1 0999995 0E-07
200 19| -0.3223908] -0.3223919] 1.1E-06] -03223008] oOE-07
10] 09| 1.0000000] 1.0000004] -4E-07| 1.0000000] OE-07
21| 20| -0.4152377| -0.4152389| 1.2E-06] -0.4152377| OE-07
11] 10| 10000000] 1.0000007] -7E-07| 1.0000000] OE-07
12| 11| 10000000 1.0000007] -7E-07] 1.0000000]  OE-07
Table 4. Simulation results for an orbit problem at various 3 12l 1.00000011 1.0000007] —6E-07|  1.0000001 0E-07
nen
values of "x 14| 13 10000001] 1.0000008| —7E-07| 10000001]  OE-07
Seq.| x Simulation results: v 15 14{ 1.0000001| 1.0000007| -6E-07| 1.0000001 0E-07
No | (sec) IExact RK(4) [RK(4) |RK- RK- 16( 15[ 10000002{ 1.0000009] -7E-07 1.0000002f  OE-07
Solutions |[Solutions |Error {Butcher |Butcher 17 1.6] 1.0000002] 1.0000008] -7E-07{ 1.0000002 O0E-07
Solutions _|Error 18] 17 1.0000003] 10000011 -8E-07[ 1.0000003]  OE-07
1] 00[ 0.0000000] 0.0000000 o| o0000000] ©OE-07
2| 01 00997836] 0.0997837] 1E-07| 00997836]  0E-07 19} 18} 10000003 1.0000013| -1E-06 10000003  OE-07
3] 02 01985713} 01985714 1E-07] o01985713]  OE-07 20(  19) 10000004 1.0000017-13E-06| 1.0000004f  OE-07
4| 03] 02053769 02953770 1E-07] 0.2953769] 0E-07 21 20[ 1.0000004] 1.0000019]-15E-06] 1.0000004] OE-07
5| 04| 03802341] 0.3892342] 1E-07] 0.3892341] OE-07
6| 05| 04792061] 04792064| 3E-07| 04792061] OE-07
71 06] 05643948 05643951| 3E-07| 05643948] OE-07 3.4 Two-body problem
8| 07| 06439500] 06439503 3E-07] 06439500 OE-07
9| o8| o7170774] om70777] 3E-07] o7170774]  OE-07 Consider the following system of coupled
10{ 09 07830472] 07830475 3E-07] 0.7830472] OE-07 . . . . )
differential equations, which is well known as
11} 10| 08412008 08412013| 5E-07] 08412008] OE-07
two-body problem
12 11| 08909579 08909584] SE-07] 089%09579]  OE-07
B 12| o98217| 09318222| 5E-07] 09318217  0E-07
14 13 09633843 09633848 SE-07| 09633843] OE-07 y =— Yy = z (10)
(2+ 2)3/2’ (2+23/2’
15| 14 09853307| 09853312 SE-07| 09853307 OE-07 y Tz y Tz
16] 15| 09974419 09974426 7E-07] 09974419]  OE-07 y(0)=1,5 (0)=10,2(0)=0,z (0)=1
17 18] 09995969] 0.9995976| 7E-07| 09995969 OE-07
18] 17| 09917743 0.9017750| 7E-07| 09917743|  OE-07 whose analytical solution is given by
19 18] 09740520 09740530] 1E-06] 097405200 OE-07
20(  1.9] 09466071} 0.9466081| 1E-06| 09466071 OE-07 ylz) = cos(z),z(z) = sin(z) (11)
21 20| 09097134| 09097145| L1E-06| 09097134| 0E-07

Table 5. Simulation results for an orbit problem at various

values of "x"

Seq.| x Simulation results: |z|=lu+jv|

No | (see) tp et TRK@  |RK@ |RK- RK-

Butcher |Butcher
Solutions |Error

Solutions |Solutions |Error

|Z|EXT |Z|RK4 ‘ZIEXT

-1zlrka
|zlrks 1zlexrlz|

RKB

The above system of equation (10) has been solved
numerically using the classical fourth  order
Runge-Kutta method and RK-Butcher algorithm. The
simulation results (with step size 0.lsec) along with
exact solutions (from equation (11)) and absolute
errors between them are calculated for various values
of vy and z and are presented in Table 6 and Table 7,
respectively. Here too, the RK-Butcher registers its
supremacy Wwhich is evident from this simulated
results.
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Table 6. Simulation results for two-body problem at

various values of "x"

15 1.4] 0.9854497| 0.9854500| 3E-07
16 15[ 0.9974949] 0.9974952] 3E-07
17 1.6] 09995735 0.9995738| 3E-07
18 1.7] 09916647 0.9916650| 3E-07
19 18] 09733475 0.9738478] 3E-07
20 19) 09462009| 0.9463002] 3E-07

0.9854497f  OE-07
0.9974949|  O0E-07
0.8995735; OE-07
0.9916647|  OE-07
0.9738475)  O0E-07
0.9462999) OE-07

Seq. X Simulation results: y
No | (sec) [Exact  |RK(4)  |RK@)|RK- RK-
Solutions |Solutions |Error [Butcher |Butcher
Solutions |{Error

1 0.0{ 1.0000000{ 1.0000000 0}  1.0000000 0E-07
2 0.1] 09950041] 0.9950042| 1E-07| 0.9950041 0E-07
3 0.2] 0.9800665] 0.9800666| 1E-07| 0.9800665 0E-07
4 03] 09553365] 0.9553366| 1E-07| 0.9553365 0E-07
5 04| 09210609{ 0.9210610| 1E-07{ 0.9210609 0E-07
6 0.5 08775825 0.8775828| 3E-07| 0.8775825 0E-07
7 06| 0.8253356 0.8253359| 3E-07| 0.8253356 0E-07
8 0.7 076484211 0.7648424| 3E-07| 0.7648421 0E-07
9 08| 06967066 0.6967069| 3E-07| 0.6967066 0E-07
10 09| 06216098] 0.6216101| 3E-07| 0.6216098 0E-07
11 10| 05403022] 05403027 5E-07| 0.5403022 0E-07
12 L1] 04535959 0.4535965| 6E-07| 0.4535959 0E-07
13 12| 03623575 0.3623580| 5E-07| 0.3623575 0E-07
14 13| 02674986] 0.2674991| 5E-07| 0.2674986 0E-07
15 14| 0.1699669| 0.1699674| 5E-07| 0.1699669 0E-07
16 15| 0.0707369] 0.0707376| 7E-07| 0.0707369 0E-07
17 16| -0.0291997| -0.0292004| 7E-07| -0.0291997 0E-07
18 17| -0.1288447| -0.1288454| 7E-07| -0.1288447 0E-07
19 18| ~0.2272024{ -0.2272031| 7E-07] -0.2272024 0E-07
20 19| -0.3232898| -0.3232905| 7E-07| -0.3232898 0E-07
21 20| -0.4161470] -0.4161480| 1E-06| -0.4161470 0E-07

Table 7. Simulation results for two-body problem at various

values of "z".

Seq. z Simulation results: z

No | (se) [Exact  |RK@)  |RK() |RK- RK-
Solutions |Solutions |Error |Butcher |Butcher

Solutions |Error
1 00| 0.0000000( 0.0000000f OE-07| 0.0000000| OE-07
2 01] 0.0998334| 0.0998334] OE-07| 0.0998334| 0E-07
3 0.2] 0.1986693| 0.1986693] OE-07| 0.1986693 0E-07
4 03] 0.2955202| 0.2955202] OE-07| 0.2955202 OE-07
5 04 0.3894183| 0.3894183| OE-07| 0.3894183 0E-07
6 05] 04794255| 04794255\ OE-07{ 0.4794255 0E-07
7 06| 05646424| 05646425 1E-07; 0.5646424 0E-07
8 0.7 0.6442177| 0.6442178| 1E-07| 0.6442177 0E-07
9 08| 0.7173361| 0.7173562| 1E-07| 0.7173561 0E-07
10 09 0.7833269] 0.7833270| 1E-07| 0.7833269 0E-07
11 10| 0.8414710] 0.8414711} 1E-07| 0.8414710 0E-07
12 11| 0.8912073 0.8912074] 1E-07| 0.8912073 0E-07
13 12| 09320391} 09320392 1E-07| 09320391 0E-07
14 13| 09635582 0.9635583| 1E-07{ 0.9635582 0E-07

21 201 09092973 0.9092976| 3E-07; 0.9092973] OE-07

IV. Conclusions

The simulated results of the periodic and oscillatory
problems using RK-Butcher algorithm is very close to
these exact solutions of the problem when compared
to that of the classical fourth order Runge-Kutta
method. From the Tables 1-7, one can observe that
for most of the time intervals, the absolute error is
less or negligible error (upto 7 decimal places) in
RK-Butcher algorithm when compared to that of the
classical fourth order Runge-Kutta method (RK(4))
(which vyields a little error) along with the exact
solutions. Hence, RK-Butcher algorithm is more
suitable for studying the periodic and oscillatory
problems and especially it is recommended for
studying the problems of orbit and two-body problems
since it gives an almost identical solution with
negligible error upto designated significant digits. That
is, the solution we get is always found to be the
exact one or with least error possible. Secondly, it
always found to be stable and converges faster than
other algorithms. Finally, the software implementation
is simple and can be extended for any length of time.
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