• Title/Summary/Keyword: Pattern recognition and classification

Search Result 448, Processing Time 0.021 seconds

Design of Robust Face Recognition System to Pose Variations Based on Pose Estimation : The Comparative Study on the Recognition Performance Using PCA and RBFNNs (포즈 추정 기반 포즈변화에 강인한 얼굴인식 시스템 설계 : PCA와 RBFNNs 패턴분류기를 이용한 인식성능 비교연구)

  • Ko, Jun-Hyun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1347-1355
    • /
    • 2015
  • In this study, we compare the recognition performance using PCA and RBFNNs for introducing robust face recognition system to pose variations based on pose estimation. proposed face recognition system uses Honda/UCSD database for comparing recognition performance. Honda/UCSD database consists of 20 people, with 5 poses per person for a total of 500 face images. Extracted image consists of 5 poses using Multiple-Space PCA and each pose is performed by using (2D)2PCA for performing pose classification. Linear polynomial function is used as connection weight of RBFNNs Pattern Classifier and parameter coefficient is set by using Particle Swarm Optimization for model optimization. Proposed (2D)2PCA-based face pose classification performs recognition performance with PCA, (2D)2PCA and RBFNNs.

ECG Pattern Classification Using Back Propagation Neural Network (역전달 신경회로망을 이용한 심전도 신호의 패턴분류에 관한 연구)

  • 이제석;이정환;권혁제;이명호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.67-75
    • /
    • 1993
  • ECG pattern was classified using a back-propagation neural network. An improved feature extractor of ECG is proposed for better classification capability. It is consisted of preprocessing ECG signal by an FIR filter faster than conventional one by a factor of 5. QRS complex recognition by moving-window integration, and peak extraction by quadratic approximation. Since the FIR filter had a periodic frequency spectrum, only one-fifth of usual processing time was required. Also, segmentation of ECG signal followed by quadratic approximation of each segment enabled accurate detection of both P and T waves. When improtant features were extracted and fed into back-propagation neural network for pattern classification, the required number of nodes in hidden and input layers was reduced compared to using raw data as an input, also reducing the necessary time for study. Accurate pattern classification was possible by an appropriate feature selection.

  • PDF

Dimensionality reduction for pattern recognition based on difference of distribution among classes

  • Nishimura, Masaomi;Hiraoka, Kazuyuki;Mishima, Taketoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1670-1673
    • /
    • 2002
  • For pattern recognition on high-dimensional data, such as images, the dimensionality reduction as a preprocessing is effective. By dimensionality reduction, we can (1) reduce storage capacity or amount of calculation, and (2) avoid "the curse of dimensionality" and improve classification performance. Popular tools for dimensionality reduction are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Independent Component Analysis (ICA) recently. Among them, only LDA takes the class labels into consideration. Nevertheless, it, has been reported that, the classification performance with ICA is better than that with LDA because LDA has restriction on the number of dimensions after reduction. To overcome this dilemma, we propose a new dimensionality reduction technique based on an information theoretic measure for difference of distribution. It takes the class labels into consideration and still it does not, have restriction on number of dimensions after reduction. Improvement of classification performance has been confirmed experimentally.

  • PDF

Pattern Classification Model using LVQ Optimized by Fuzzy Membership Function (퍼지 멤버쉽 함수로 최적화된 LVQ를 이용한 패턴 분류 모델)

  • Kim, Do-Tlyeon;Kang, Min-Kyeong;Cha, Eui-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.573-583
    • /
    • 2002
  • Pattern recognition process is made up of the feature extraction in the pre-processing, the pattern clustering by training and the recognition process. This paper presents the F-LVQ (Fuzzy Learning Vector Quantization) pattern classification model which is optimized by the fuzzy membership function for the OCR(Optical Character Recognition) system. We trained 220 numeric patterns of 22 Hangul and English fonts and tested 4840 patterns whose forms are changed variously. As a result of this experiment, it is proved that the proposed model is more effective and robust than other typical LVQ models.

Classification and recognition of electrical tracking signal by means of LabVIEW (LabVIEW에 의한 Tracking 신호 분류 및 인식)

  • Kim, Dae-Bok;Kim, Jung-Tae;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.779-787
    • /
    • 2010
  • In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

Multi-scale Attention and Deep Ensemble-Based Animal Skin Lesions Classification (다중 스케일 어텐션과 심층 앙상블 기반 동물 피부 병변 분류 기법)

  • Kwak, Min Ho;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1212-1223
    • /
    • 2022
  • Skin lesions are common diseases that range from skin rashes to skin cancer, which can lead to death. Note that early diagnosis of skin diseases can be important because early diagnosis of skin diseases considerably can reduce the course of treatment and the harmful effect of the disease. Recently, the development of computer-aided diagnosis (CAD) systems based on artificial intelligence has been actively made for the early diagnosis of skin diseases. In a typical CAD system, the accurate classification of skin lesion types is of great importance for improving the diagnosis performance. Motivated by this, we propose a novel deep ensemble classification with multi-scale attention networks. The proposed deep ensemble networks are jointly trained using a single loss function in an end-to-end manner. In addition, the proposed deep ensemble network is equipped with a multi-scale attention mechanism and segmentation information of the original skin input image, which improves the classification performance. To demonstrate our method, the publicly available human skin disease dataset (HAM 10000) and the private animal skin lesion dataset were used for the evaluation. Experiment results showed that the proposed methods can achieve 97.8% and 81% accuracy on each HAM10000 and animal skin lesion dataset. This research work would be useful for developing a more reliable CAD system which helps doctors early diagnose skin diseases.

Similarity Measurement Using Open-Ball Scheme for 2D Patterns in Comparison with Moment Invariant Method (Open-Ball Scheme을 이용한 2D 패턴의 상대적 닮음 정도 측정의 Moment Invariant Method와의 비교)

  • Kim, Seong-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • The degree of relative similarity between 2D patterns is obtained using Open-Ball Scheme. Open-Ball Scheme employs a method of transforming the geometrical information on 3D objects or 2D patterns into the features to measure the relative similarity for object(patten) recognition, with invariance on scale, rotation, and translation. The feature of an object is used to obtain the relative similarity and mapped into [0, 1] the interval of real line. For decades, Moment-Invariant Method has been used as one of the excellent methods for pattern classification and object recognition. Open-Ball Scheme uses the geometrical structure of patterns while Moment Invariant Method uses the statistical characteristics. Open-Ball Scheme is compared to Moment Invariant Method with respect to the way that it interprets two-dimensional patten classification, especially the paradigms are compared by the degree of closeness to human's intuitive understanding. Finally the effectiveness of the proposed Open-Ball Scheme is illustrated through simulations.

  • PDF

Research Trends in CNN-based Fingerprint Classification (CNN 기반 지문분류 연구 동향)

  • Jung, Hye-Wuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.653-662
    • /
    • 2022
  • Recently, various researches have been made on a fingerprint classification method using Convolutional Neural Networks (CNN), which is widely used for multidimensional and complex pattern recognition such as images. The CNN-based fingerprint classification method can be executed by integrating the two-step process, which is generally divided into feature extraction and classification steps. Therefore, since the CNN-based methods can automatically extract features of fingerprint images, they have an advantage of shortening the process. In addition, since they can learn various features of incomplete or low-quality fingerprints, they have flexibility for feature extraction in exceptional situations. In this paper, we intend to identify the research trends of CNN-based fingerprint classification and discuss future direction of research through the analysis of experimental methods and results.

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.133-142
    • /
    • 2021
  • Travel pattern recognition is widely used in many aspects such as user trajectory query, user behavior prediction, interest recommendation based on user location, user privacy protection and municipal transportation planning. Because the current recognition accuracy cannot meet the application requirements, the study of travel pattern recognition is the focus of trajectory data research. With the popularization of GPS navigation technology and intelligent mobile devices, a large amount of user mobile data information can be obtained from it, and many meaningful researches can be carried out based on this information. In the current travel pattern research method, the feature extraction of trajectory is limited to the basic attributes of trajectory (speed, angle, acceleration, etc.). In this paper, permutation entropy was used as an eigenvalue of trajectory to participate in the research of trajectory classification, and also used as an attribute to measure the complexity of time series. Velocity permutation entropy and angle permutation entropy were used as characteristics of trajectory to participate in the classification of travel patterns, and the accuracy of attribute classification based on permutation entropy used in this paper reached 81.47%.

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF