References
- B. Moghaddam and M. Yang, “Gender Classification with Support Vector Machines,” Proc. Int'l Conf. Automatic Face and Gesture Recognition, pp. 306-311, Mar. 2000.
- M. Castrillon-Santana, “On Real-Time Face Detection in Video Streams: An Opportunistic Approach,” PhD dissertation, Universidad de Las Palmas de Gran Canaria, Mar. 2003.
- E. Makinen and R. Raisamo, “Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces,” IEEE Trans. on PAMI, Vol. 30, No. 3, pp. 541-547, 2008 https://doi.org/10.1109/TPAMI.2007.70800
- G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary patterns with an application to facial expressions,” IEEE Trans. on PAMI, Vol. 29, No. 6, pp. 915-928, 2007
- M. Heikkila and M. Pietikainen, “A Texture-Based Method for Modeling the Background and Detecting Moving Objects,” IEEE Trans. on PAMI, Vol. 28, No. 4, pp. 657-662, April 2006.
- P. Viola and M.J. Jones, “Robust Real-Time Face Detection,” Int'l J. Computer Vision, vol. 57, no. 2, pp. 137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
- “OpenCV 1.0, Open Source Computer Vision Library,” http://www.intel.com/technology/computing/opencv/, 2006.
- T. Cootes and C. Taylor, Statistical Models of Appearance for Medical Image Analysis and Computer Vision, 2001.
- E. Makinen and R. Raisamo, “Real-Time Face Detection for Kiosk Interfaces,” Proc. Asia-Pacific Conf. Computer-Human Interaction 2002, pp. 528-539, 2002.
- Y99999 Freund and R. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” J. Computer Systems Science, vol. 55, no. 1, pp. 119-139, 1997. https://doi.org/10.1006/jcss.1997.1504
- C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
- C. Chang and C. Lin, “LIBSVM: A Library for Support Vector Machines,” http://www.csie.ntu.edu.tw/~cjlin/libsvm/, 2001.