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Abstract: For pattern recognition on high-dimensional
data, such as images, the dimensionality reduction as
a preprocessing is effective. By dimensionality reduc-
tion, we can (1) reduce storage capacity or amount of
calculation, and (2) avoid “the curse of dimensionality”
and improve classification performance. Popular tools
for dimensionality reduction are Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA),
and Independent Component Analysis (ICA) recently.
Among them, only LDA takes the class labels into con-
sideration. Nevertheless, it has been reported that the
classification performance with ICA is better than that
with LDA because LDA has restriction on the number of
dimensions after reduction. To overcome this dilemma,
we propose a new dimensionality reduction technique
based on an information theoretic measure for difference
of distribution. It takes the class labels into consider-
ation and still it does not have restriction on number
of dimensions after reduction. Improvement of classifi-
cation performance has been confirmed experimentally.

1. Introduction

When performing a pattern classification, first, we
train the classifier by sample data together with their
class labels, and then, classify the real-data using that
trained classifier. If the dimension of data is large, tak-
ing raw data into classifier is not useful because amount
of caleulation or storage capacity will be too large and
it brings classification performance bad influence of the
curse of dimensionality. Therefore, taking a dimension-
ality reduction into raw data before pattern classifica-
tion will be the better way.

Popular dimensionality reduction tools used for such
cases are Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), and Independent Compo-
nent Analysis (ICA). In these, PCA and ICA does not
use class labels which sample data have. Only LDA
takes class information into dimensionality reduction
process. However, it has been reported that classify-
ing with ICA gives the best classification performance
among them[1]. One reason for this is that LDA has
a restriction that the number of reduced dimensions is
limited up to the number of classes, and it makes short-
age of information for pattern classification.

In the present study, the authors propose a dimen-
sionality reduction method which has the following de-

sired properties at the same time:

« efficient use of class labels in sample data
» no restriction on the number of dimensions after the
dimensionality reduction

This is based on Kullback-Leibler (KL) divergence,
which is used as a measure of “difference” between
classes after the dimensionality reduction. We explain
the algorisms of the dimensionality reduction method
in section 2. And the eflectiveness of the method is con-
firmed experimentally in section 3.

2. Proposed Method
2.1 Setting of problem

In the present paper, we study problem of two classes.
High-dimensional data z(t) € RV,(t = 1,...,T) and
whose class labels ¢(t) = {1,2} are given. And we
hope to determine a ‘nice’ reduction matrix A4, where
A is an N x L matrix. Then we apply a certain clas-
sification method to the low-dimensional reduced data
y(t) = ATx(t).

2.2 Kullback-Leibler divergence

The authors consider that A is ‘nice’ when the dis-
tributions of y are clearly different between class 1 and
2. In order to measure difference between distributions,
we use Kullback-Leibler (KL) divergence
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Here g and p are probability density functions of class 1
and 2.

In particular, KL divergence between two normal distri-
butions
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2.3 Reduction to one dimension

When L = 1, A is a vector and y is a scalar, so
we denote A as a and y as y. Let go(z) and po(x) be
the empirical distributions of classes ¢ = 1 and ¢ = 2,
respectively. We approximate ¢y and py with normal
distributions ¢ and p which have same mean vector and
covariance matrix as go and po,

a() ~ Ny, Vi),
{ p() ~ N(up V) - @

With a linear transformation
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we can assume that q is standard normal distribution:
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where I is the identity matrix. In the above setting, KL
divergence after reduction is

pla) = % (@TVa -loga™Va+ (ApTa)?). (7)

We hope to find @ which maximizes y(a). Since ¢ sat-
isfies
p(aa) = p(a) (a#0,a€ R), (®)

we restrict
llall=1 9)

without loss of generality. In summary, the optimization

problem
flall=1 (10)

is led by the above discussion. This optimization prob-
lem is solved by steepest descent method:

rw=2-{(3
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Here 7 is a positive, small, constant number. Procedures
(12) and (13) are repeated until they converge. In addi-
tion, in order to avoid convergence to local maximum,
we try the above optimization procedures several times
from different initial values of @. Then we adopt the
trial which achieves the largest ¢(a).

2.4 reduction to L dimensions

A direct extension of the above procedure to L dimen-
sion case is optimization of reduction matrix A with the
target function D(p || q). However, we take a greedy
method .instead so that we can save calculations and
write its program easily. First, we compute a; by the
above method:

a, = arg max ¢(a). (14)

llatl=1

Second, we introduce a restriction that ys = ag x does
not have any correlation with the previously extracted
component y; = aT:z:. We perform the optimization of
a; under this restriction. It makes information overlap
smaller, so that the classification performance will be
better. Rest vectors as,...,ap are sequentially deter-
mined in the same way. Namely, we introduce restric-
tions that yx = afz,(k > 3) does not have any cor-
relation with y;,...,yx—1, and we optimize as,...,ar
under these restrictions. Note that these restrictions are
equivalent to

alVarlzlar =0, (i=1,2,...,k—1). (15)
From this, we obtain the optimization problem
ar = arg max vla), (16)

|@jl=1
alVarlzla; =0,(j =1,...,k—1). (17)
And furthermore, to make computation easier, we re-
places (17) with

T, —
a; a; =0,

G=1,...,k—-1). (18)

To this end, the updating rule for the optimization prob-
lem is as follows:

@, <+ ap+nFla), (19)
dar < a—HTATa,, (20)
a + aiflldadl, (21)

where H = (AT A)~* AT is a generalized inverse of A.

3. experiments

We have experimentally compared classification per-
formance after dimensionality reduction by PCA, LDA,
and the proposed method. As the classifier in these
experiments, we use Support Vector Machine (SVM)
which is popular in recent years. In order to measure
generalization ability, data set is divided into two sets:
training set and test set. The procedure of experiments
is as follows: (1) Determine the reduction matrix A
by PCA, LDA, and the proposed method based on the
training set {x}. (2) Apply A to the training set and
obtain the reduced training set {y = ATz}. (3) Train
SVM for the reduced training set. (4) Classify the test
set via the above trained SVM and measure its perfor-
mance'. Radial Basis Function (RBF) kernel is used for
all experiments. For each experiment, RBF parameter
~ has decided to the value which gave the best perfor-
mance.

3.1 Experiment with synthetic data

First, we illustrate the effect of our criterion (7) with
a synthetic data.

We have educed a two dimensional synthetic data into
one dimension. The data have plural clusters (Fig.1).
Fig.2 is the plot of reduced data (upper is by PCA,

iIn this experiment, we used 'MATLAB Support Vector Ma-
chine Toolbox’ provided by Dr. Gavin Cawley[2].
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Figure 1. two dimensional synthetic data (o is class ¢ = 1
and x is ¢ = 2)

middle is by LDA, and lower is by our method). These
reduced data have been input to SVM? and classification
performance for each case has been measured (Table 1).
The classification with PCA is poor because the variance
of whole data is almost same for any directions. The
performance by LDA is also low because the within-
class mean of each class is almost same. In contrast,
our method could extract the most effective component
for classification.

-5 n 5
. o e 2r o« » * www  we ¥
- ; ; e R RS
4 3 2 * ] 1 ? 2 4
- e———————c 4y
Lsss TR R e e R NI

-k -4 R % ¥

Figure 2. dimension reduced data (upper : PCA, middle
: LDA, lower : our’s)

[PCA | LDA | our’s
46.7 | 43.3 | 96.7

Table 1. rate of correct classification [%] by SVM

3.2 Experiment with real-world data
3.2.1 Experiment with WPBC dataset

Second, we experimented classifying a real-world data
“Wisconsin Prognostic Breast Cancer (WPBC)”3. 1t is
32-dimensional data of various follow-ups on breast can-
cer patients. Class ¢ == 1 (nonrecur) includes 151 records
and ¢ = 2 (recur) has 47 records. We reduced these
data to L dimensions (L = 1,...,31) by PCA and by

2RBF parameter v = 0.5 and regularization parameter C = 100.

314 is provided by W. Nick Street, Computer Sciences Dept.,
University of Wisconsin, 1210 West Dayton St., Madison, WI
53706i. ftp://ftp.cs.wisc.edu/math-prog/cpo-dataset /machine-
learn/WPBC/

our method. By LDA, only reduction to one dimension
is possible since the number of classes is two: this is
an intrinsic restriction of LDA. After dimensionality re-
duction, we have tried classification of each reduced data
by SVM. The horizontal axis of Fig. 3 is dimensions of
reduced data and the vertical axis is correct classifica-
tion rate of each case. Performances of our method are
higher than that of PCA and LDA in any cases.
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Figure 3. rate of correct classification for dimension-
reduced WPBC data. RBF parameter v = 0.01
for our method, and v = .05 for PCA and LDA.

3.2.2 Experiment with the multi-feature digit datases

Third, we experimented with the data of the multi-
feature digit dataset?. Among them, we used Fourier co-
efficients of the character shapes. It is a dataset of hand-
written numerals, 76-dimensional and 10 classes (nu-
meral ‘O’ to ‘9’) data. Each class includes 200 records.
We have tried classification of two digits, for example,
‘1’ and ‘4’. Tt is observed that most combinations of
two digits are too easy for benchmark of classification.
To get difficult combination, we classified all combina-~
tions using LDA, and we picked six combinations which
results worst performance. For these difficult combina-
tions, the following experiments are performed. Reduce
the data of combination to L dimensions (L = 1,...,75)
and classify each reduced data by SVM. The resuits of
classifications are shown in Fig. 4. Fig. 4(a) is the re-
sult of classification between class ‘1’ and ‘2’, Fig. 4(b)
is between class ‘1’ and ‘3’, Fig. 4(c) is between class ‘1’
and ‘4’, Fig. 4(d) is between class ‘1’ and ‘7, Fig. 4(e) is
between class ‘4’ and ‘7’, and Fig. 4(f) is between class
‘6’ and ‘9. In each result, classification performance
with LDA is best when the dimension of reduced data,
is 1. However, when the data are reduced to the opti-
mal dimensions, our method gives the best classification
performance.

41t is provided by Robert P.W. Duin, Department of Applied
Physics, Delft University of Technology, P.O. Box 5046, 2600
GA Delft, The Netherlands. ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/mfeat /
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Figure 4. rate of correct classification for dimension-reduced multi-feature digit dataset. RBF parameter v = 0.01
for our method, and v = 0.05 with PCA and LDA.
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We have proposed a new method of linear dimension-
ality reduction based on KL divergence, and experimen-
tally demonstrated improvement of classification perfor-
mance cqmpared with PCA and LDA. Now we are try-
ing to extend this method to data which have three or
more classes. We are also planning more experiments,
including comparison with ICA and application to data
which have hundreds or thousands of dimensions.
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