• Title/Summary/Keyword: Partially composite beam

Search Result 48, Processing Time 0.028 seconds

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

A Study on the Analytical Method for Fire Resistance Calculation of Asymmetric Slimfloor Beam (비대칭 슬림플로어 합성보의 내화성능 산정에 관한 해석적 방법 연구)

  • Park, Soo-Young;Park, Won-Sup;Kim, Heung-Youl;Hong, Gap-Pyo
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2010
  • Asymmetric Slimfloor Beam (ASB) is a composite beam developed in Europe whose asymmetric H beam is partially inserted in concrete slab. Recently in Korea, Asymmetric Slimfloor Beam has been studied in order to save the story height of a building, reduce the amount of construction materials and increase the fire resistance of a building. On this study, the fire resistance of Asymmetric Slimfloor Beam was checked by a fire test and moment capacity was calculated at fire resistance time by a heat-transfer analysis. Using the analysis result, 3-hour fire resistance constructions consisted of fireproof gypsum boards and ASB were selected and fire resistances of selected constructions were checked.

Predicting the Compressive Strength of Thin-walled Composite Structure (복합재 박막 구조물의 압축강도 예측)

  • Kim, Sung Joon;Lee, Donggeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.9-15
    • /
    • 2019
  • The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

An Experimental Study on the Fire Resistance behaviour of Asymmetric Slimfloor Beam According to Cross Section Shape Variation (비대칭 H형강 합성보의 단면형상변화에 따른 온도특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Lee, Jae-Sung;Kwon, Ki-Hyuck;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • The temperature development of a structural element is dependent on section factor, which is estimated as a ratio of the fire-exposed perimeter to the cross-section area. Hence, with the higher section factor, the faster temperature development of the section os observed. Composite beam member, partially embedded asymmetry H beam, has a good fire resistance to the cross-section. The study was intended to conduct with change with section factor. The experimental result of section type which the Slim Beam Floor is bottom flange reinforced method.

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

An Experimental Study on Fire Resistance Performance of Asymmetric Slimfloor Beam (단면형상 변화에 따른 비대칭 H형강 합성플로어 내화성능변화에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hoon;Lee, Jea-Sung;Cho, Kyung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.7-8
    • /
    • 2010
  • The temperature development of a structural element is dependent on section factor, which is estimated as a ratio of the fire-exposed perimeter to the cross-section area. Hence, with the higher section factor, the faster temperature development of the section os observed. Composite beam member, partially embedded asymmetry H beam, has a good fire resistance to the cross-section. The study was intended to conduct with change with section factor. The experimental result of section type which the Slim Beam Floor is bottom flange reinforced method.

  • PDF

Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle (상·하부 ㄱ형강 반강접 CFT 기둥-보 접합부의 단조 및 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In this paper a systematic numerical analysis is performed to obtain the bending moment resisting capacity of a top and seat angle connection, which is a type of partially restrained connection, for a CFT composite frame subjected to cyclic loading. This partially restrained composite CFT connections are fabricated using high strength steel connection bar. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes. A wide scope of additional structural behaviors explain the different influences of the top and seat angle connection's parameters, such as the different thickness of connection angles and the gage distances of the high strength steel bar. The moment-rotation angle relationships obtained from the finite element analysis are compared with those from Richard's theoretical equation.

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.