• Title/Summary/Keyword: Pade Approximation

Search Result 36, Processing Time 0.023 seconds

Design of Networked based Control Systems using Pade Approximation and Reduction of Higher-order Transfer Function (Pade 근사법과 전달함수 축소기법을 이용한 네트워크 기반 제어 시스템 설계)

  • Shin, Dong-Gi;Cho, Hyun-Cheol;Han, Hyun-Tae;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.39-40
    • /
    • 2008
  • 본 논문은 네트워크 기반 제어시스템(NCS: Networked Control Systems)모델매칭 제어기법을 적용한 효율적인 제어알고리즘을 제안한다. 비선형의 특징을 가지는 제어기 및 관측기의 시간지연을 Pade 근사법으로 선형화하여 선형시스템 이론을 적용한 모델매칭 제어기를 설계하였다. 또한, 제어기의 차수를 줄이기 위하여 저차시스템으로 근사화하여 그 타당성을 검증하였다. 제안한 제어알고리즘의 타당성 및 신뢰성을 검증하기 위하여 컴퓨터 시뮬레이션을 실시하였으며 기존의 PID 제어기법과 비교분석하였다.

  • PDF

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pade Approximation (FDTD법과 Pade 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • 오순수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.396-396
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is $TE_{01{\delta}}$ mode.

On-Line Sliding Mode Controller Design from a Single Closed Loop Test (단일 폐루프 테스트를 통한 온라인 슬라이딩 모드 제어기 설계)

  • Bae Jun-hyung;Lim Dong-kyun;Suh Byung-sulh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The calculation of parameters of a process model is modified to find better sliding mode controller for a process. A design method by Camacho has such problems as chattering and overshoot due to the Taylor the approximation errors for the time delay term of the first order model. In this paper, a new design technique for a sliding mode controller is proposed by introducing the modified Pade approximation considering the weight factor. With the proposed method, the process response can be directly used to estimate the system parameters without any numerical processing.

A study on the $\mu$-controller for the compensation of the network induced delays in the distributed (CAN 통신을 이용한 분산제어 시스템의 시간지연보상을 위한 $\mu$-제어기에 관한 연구)

  • Ahn, Se-Young;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.657-659
    • /
    • 2004
  • CAN is a serial communication bus for real-time controls and automations in distributed control systems. In distributed control systems, occasionally a sensor module and a controller are not in the same node and physically separated. In order for the signal from a sensor node to reach the controller node, the signal must travel through network. CAN has a certain capabilities to deal with real-time data. However, when many nodes on the networks try to send data on the same network, the arbitration mechanism to solve the data collision problem is necessary. This situation causes the time delay which has detrimental effects on the performance of the control systems. This paper proposes a method to solve the problem due to the time delay in distributed control system using CAN. Time delay is approximated to an element with a rational transfer function using Pade approximation and Mu~synthesis method is applied. Since time delay in the network is not constant, the time delay element is considered to be an uncertainty block with a bound. The proposed method is applied to the experimental system with CAN and proved to be effective.

  • PDF

Analysis of Arrayed Waveguide Grating Waveglength Filter using Wide Angle Beam Propagation Method (Wide Angle BPM 을 이용한 광도파로열 격자 파장 필터의 해석)

  • Park, Jun-O;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.46-55
    • /
    • 2002
  • The key component to accomplish the WDM all optical network is an Arrayed Waveguide Grating(AWG) wavelength filter Numerical analysis is necessary for design and analysis of optical components like AWG wavelength filter. Beam Propagation Method(BPM) is the most widely-used method. In this paper, we analyze the difference between the paraxial BPM and the WA-BPM when they are applied to the analysis of InP/InGaAsP/InP AWG wavelength filter. The paraxial BPM is based on paraxial approximation, and the WA-BPM is based on the low order Pade approximant. The side lobe level(SLL) and insertion loss calculated from both methods are compared. The high order Pade approximant will to used to more accurate design and analysis of AWG.

Test Setup for Flight Sensor Dynamics and Compensation of Time-delayed Position Output (비행 센서의 동특성 측정과 위치 출력의 시간 지연 보상)

  • Park, Sang-Hyuk;Lee, Sang-Hyup
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.16-20
    • /
    • 2010
  • The dynamic characteristics of flight sensors is obtained by a simple method that deploys a pendulum with a rotary encoder. The encoder output is used with kinematic relations to derive reference signals for various flight sensors, including position, velocity, attitude, and angular rate sensors as well as accelerometer and magnetic sensors. A time delay of 0.4 seconds is found in the position output of the flight sensor under investigation. A logic to compensate for the time delay using a velocity information is proposed and validated in flight tests.

Parabolic Model for Wave Refraction-Diffraction (포물형방정식을 이용한 파의 굴절.회절모형)

  • 정신택;채장원;안수한;정원무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1990
  • A parabolic model is presented for the effective calculation of refraction-diffraction of regular water while they are propagating on the water of slowly varying sea bed with currents. Parabolic wave equation has been used in the model, which is derived from a mild-slope equation using Pade' approximation. With the corrections of Kirby's (1986) model some numerical experiments were carried out to analyze the model accuracy.

  • PDF

Network based Control Systems with Uncertain Time Delay using Model Matching and Pade Approximation

  • Cho, Hyun-Cheol;Kim, Kwan-Hyung;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.988-991
    • /
    • 2010
  • This paper presents a control design for networked control systems (NCS) with uncertain time delay using model matching. The dynamics of the time delay are approximated through the Pade linearization and the uncertain delay term is recursively estimated by the recursive least square (LS) algorithm. Computer simulation illustrates that the proposed control compares favorably with a recently published control approach.

  • PDF

Rational Approximation of Multiple Input Delay Systems Using the Hankel Singular Values Vectors (한켈특이치와 특이벡터를 이용한 복수 입력 시간지연 시스템의 유리근사화)

  • 황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.299-304
    • /
    • 1996
  • This paper studies the rational approximation of multiple input delay systems using the Hankel singular values and vectors, which are the soultion of a transcendental equation. Rational approximatants are obtained from output normal realizations which are constructed by the Hankel singular values and vectors. Consequently, it is shown that rational approximants by output normal realization preserve intrinsic properties of time delay systems than Pade approximants.

  • PDF

2D Two-Way Parabolic Equation Algorithm Using Successive Single Scattering Approach (연속적인 단일 산란 근사를 이용한 2차원 양방향 포물선 방정식 알고리즘)

  • Lee, Keun-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.339-345
    • /
    • 2006
  • We suggest new 2D two-way Parabolic equation algorithm for multiple scattering. Our method is based on the successive performance of the single scattering approach. First. as the single scattering algorithm, the reflected and transmitted fields are calculated at the vertical interface of a range independent sector. Then. the reflected field is saved and the transmitted field Propagated to the next vertical interface with the split-step Pade method. After one step ends, the same Process is repeatedly performed with the change of the Propagation direction until the reflected field at the vertical interface is close to zero. Final incoming and outgoing fields are obtained as the sum of the wave fields obtained for each step. Our algorithm is relatively simple for the numerical implementation and requires less computational resources than the existing algorithm for multiple scattering