• Title/Summary/Keyword: PFC converter

Search Result 391, Processing Time 0.027 seconds

Sensorless Control of 3-phase PFC AC/DC Converter using Kalman Filter (칼만필터를 이용한 3상 PFC AC/DC 컨버터의 센서리스 제어)

  • Park, Jun-Sung;Kwon, Young-Ahn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.998-1004
    • /
    • 2016
  • This paper investigates a new sensorless control appling a virtual flux oriented vector control without the line voltage sensor for the power factor correction of 3 phase PWM converter. The DC output voltage is controlled by applying the kalman filter algorithm for the virtual flux estimation and the synchronous phase is obtained by using the estimated virtual flux equation based on kalman filter. This method is used to reduce the calculation time of the system and obtain a stable control that the input current including the harmonics and the noise is improved. The proposed system implement PFC algorithm in the variable region of DC output voltage. It can obtain the unity power factor, and can precisely control the DC output voltage in the load variation and in the variable voltage range. The performance of the proposed algorithm is verified through simulation and experiment.

Bridgeless High Efficiency ZVZCS Power Factor Correction Circuit for PDP Power Module (PDP 파워 모듈을 위한 브리지 없는 고효율 ZVZCS 역률개선회로)

  • Ryu Byung-Gyu;Moon Gun-Woo;Cho Kyu-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.226-232
    • /
    • 2005
  • Recently, many nation have released standard such as IEC 61000-3-2 and IEEE 59, which impose a limit on the harmonic current drawn by equipment connected to AC line in order to prevent the distortion of an AC Line. Therefore, Plasma Display Panel(PDP) which is highlightened in digital display device also has the Power Factor Correction(PFC) circuit to meet the harmonic requirements. In PDP power module, the conventional boost converter is usually used for the PFC circuit. However, it comes serious thermal problem on it's bridge diode due to heat of PDP, and therefore the system stability is not guaranteed. In this paper, the bridgeless boost converter, which is used for PFC circuit of the PDP power module, is designed and verified the possibility of the application In a practical product in a view of efficiency, component count, temperature and etc.

A Study on the Operational Characteristics of PFC at Instantaneous Power Interrupt (순시 정전 시 역률 개선 회로의 동작 특성에 관한 연구)

  • 이해돈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • Recently, there have been Increasing demands for high power factor and low harmonic distortion in the current drawn from utility. The harmonic limits imposed by international standards. It need the PFC techniques in order to reduce line current harmonics and comply with the standards. The average current control method that is the most proper PFC control method in a switching power supply of middle and high power has been used mostly to PFC control method. However, the switching device of PFC circuit has frequently destructed at power return after instantaneous power interrupt. Therefore, this paper have verified the cause of this problems and proposed the solution through simulation and experiment

Single-Stage Single-Switched AC/DC Converter with Magnetic Coupled Nondissipative Snubber (자기결합 무손실 스너버를 갖는 새로운 고역률 단일전력단 AC/DC 컨버터)

  • 조정욱;문건우;정영석;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.423-431
    • /
    • 1997
  • A new single-stage/single-switched forward converter with magnetic coupled nondissipa-tive snubber is proposed. The proposed converter gives the good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for low power level power supply applications.

  • PDF

An Integrated Single-Stage Zero Current Switched Quasi-Resonant Power Factor Correction Converter with Active Clamp Circuit (능동 클램프 회로를 적용한 단상 ZCS 공진형 역률개선 컨버터)

  • 이준영;문건우;고관본;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.626-630
    • /
    • 1999
  • A new integrated single-stage zero current switched(ZCS) quasi-resonant converter (QRC) for the power factor correction(PFC) converter is introduced in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of an input current. The proposed converter has the characteristics of the good power factor, low line current harmonics, and tight output regulation. Furthermore, the ringing effect due to the output capacitance of the main switch can be eliminated by use of active clamp circuit.

  • PDF

A NOVEL ZVS-CV PWM AC-DC CONVERTER

  • Yan, Baiping;Chen, Zhiming;Liu, Jian
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.709-712
    • /
    • 1998
  • A new ZVS-CV PWM converter with power factor correction (PFC) function is presented in this paper. The new topology is a integration of a boost converter and a ZVS-CV topology in a single power conversion stage. The new converter can be regulated in pulse-width modulation (PWM) by universal integrated control circuits. Some design considerations are given in detail. A laboratory prototype has been implemented to show the feasibility of the approach and the analysis.

  • PDF

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output i is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power f factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Cr, a fast r recovery snubber diode Dr' and a commutation diode Dp. This paper presents the complete operating principles, t theoretical analysis and experimental results.

  • PDF

A study on the power factor improvement of the Boost Forward Converter (BF 컨버터의 역률 개선에 관한 연구)

  • 임승하
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.56-63
    • /
    • 1999
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF (Boost Forward) converter with PWM-PFM control technique to control DC output voltage, and to control the input current with sinusoidal wave synchronized by the converter and inverter using power switching element, FET and IGBT. The control circuit of the suggested Boost converter is implemented with a microprocessor 80C196. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. We control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally. PF can be improved up to 0.96 using the current shaping technique.

  • PDF

Digital Load Sharing Method for Converter parallel Operation (컨버터 병렬운전을 위한 디지털 부하분담 기법)

  • Yoo, Kwang-Min;Kim, Won-Yong;Park, Seung-Hee;Lee, Dong-Hoo;Kim, Yun-Sung;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • This paper presents CAN-based parallel-operation and load-sharing techniques for the communication server power supply. With the load information obtained through CAN communication, each modules performs its current control independently and the power unbalance caused by impedance differences of converter modules can be reduced. In conventional method, slave modules are controlled by master module. On the other hand, the proposed load share algorithm uses the Multi-Master method. Therefore, accurate load sharing can be accomplished by the reference structure of each module's average current. Each converter has two stages and it is separated into PFC, which is responsible for harmonic regulation, and LLC resonant converter, which controls output voltage. To verified the performance of the proposed method, two 2KW prototypes has been implemented and experimented.

High Efficiency AC-DC Converter Using Average-Current Mode Flyback Topology for PDP and Improvement of Hold-up Characteristic (평균전류모드 플라이백 토폴로지를 이용한 PDP용 고효율 AC-DC 컨버터 및 Hold-up 특성 개선)

  • Lee, Kyung-In;Lim, Seung-Beom;Jung, Yong-Min;Oh, Eun-Tae;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.23-27
    • /
    • 2008
  • Recently, regulation for THD (Total Harmonic Distortion) such as IEC 61000-3-2, IEEE 519 is being reinforced about a product which directly connects to AC line in order to prevent distortion of common power source in electronic equipment and electrical machinery. In order to satisfy these regulations, conventional circuits were used two-stage structure attached power factor correction circuit at ahead of converter but this method complicate the circuit and then a number of element increases thereupon the cost of production rises. in this paper, we propose a high efficiency single-stage 300W PFC fly-back converter that improved power factor and efficiency than conventional two-stage power module.

  • PDF