• Title/Summary/Keyword: PFC converter

Search Result 391, Processing Time 0.027 seconds

New Single Stage PFC Full Bridge AC/DC Converter (새로운 방식의 PFC Single Stage Full Bridge AC/DC Converter)

  • 임창섭;권순걸
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 2002
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.

  • PDF

Simulation and Experimentals of a Bi-Directional Converter with Input PFC on SRM System

  • Maged Maged N.F.
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.121-130
    • /
    • 2006
  • This paper presents the performance and efficiency of a drive system incorporating a switched-reluctance motor (SRM) with input power factor correction (PFC). The proposed system consists of a PFC, bi-directional converter, an inverter, and a SRM operating as based voltage source drives (VSD). First, theoretical analysis is made for each identified mode of operation in the drive system. This is followed by comparing the performance of the SRM drive system with and without a PFC circuit. The losses are also calculated for both systems and overall efficiency. Experimental results are presented to prove the theoretical analysis.

Analysis of the Admittance Component for Digitally Controlled Single-Phase Bridgeless PFC Converter

  • Cho, Younghoon;Mok, Hyungsoo;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.600-608
    • /
    • 2013
  • This paper analyzes the effect of the admittance component for the digitally controlled single-phase bridgeless power factor correction (PFC) converter. To do this, it is shown how the digital delay effects such as the digital pulse-width modulation (DPWM) and the computation delays restrict the bandwidth of the converter. After that, the admittance effect of the entire digital control system is analyzed when the bridgeless PFC converter which has the limited bandwidth is connected to the grid. From this, the waveform distortion of the input current is explained and the compensation method for the admittance component is suggested to improve the quality of the input current. Both the simulations and the experiments are performed to verify the analyses taken in this paper for the 1 kW bridgeless PFC converter prototype.

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

The Digital Controller of the Single-Phas Power Factor Correction(PFC) having the Variable Gain (가변 이득을 가지는 단상 PFC 디지털 제어기)

  • 정창용
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.163-167
    • /
    • 2000
  • This paper presents the digital control of single-phase power factor correction(PFC) converter which has the variable gain according to the condition of inner control loop error. Generally the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This has a bad influence on the power factor because current loop doesn't operate smoothly in the condition that input voltage is low In particular a digital controller has more time delay than an analog controller and degrades This drops the phase margin of the total digital PFC system,. It causes the problem that the gain of current control loop isn't increased enough. In addition the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult The digital PFC controller presented in this paper has a variable gain of current control loop according to input voltage. The 1kW converter was used to verify the efficiency of the digital PFC controller.

  • PDF

Conducted Noise Reduction in PFC Boost Converter for Air Conditioner (에어컨용 PFC Boost Convertor의 전도 노이즈 저감)

  • 이성희;김이훈;김영규;원충연;김태덕;김대경
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.455-462
    • /
    • 2003
  • Switching PFC converters are widely used not only to comply the power quality specification but also for maximum efficiency. However switching PFC converters generate serious electromagnetic interference(EMI). In this paper to solve this problem, we applied the APW(Anti-Phase Winding) and RPWM(Random PWM) technique to PFC boost converter and obtained good results. Simulation and experimental results show the improved harmonics and reduced EMI effect in air-conditioner system.

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.

Single Phase Single-Stage AC/DC Forword PFC Converter with PFC (단상 역율개선형 Single-stage AC/DC Forward Converter)

  • 김은수
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.396-399
    • /
    • 2000
  • 기존이 역률보상회로가 별도의 전력변화단을 가지고 있어 소자수가 많아지고 복잡한 하드웨어 구성을 가지고 있는 단점이 있다 본 논문에서는 별 도의 전력변환단을 가지지않고 PFC기능을 가지는 단일 전력단(Single-Stage) 단상 AC/DC Forward Converter에 대하여 실험하여 검증하였다

  • PDF

Study of DCM Interleaved Boost PFC Converter without the Detection of the Inductor Current (인덕터 전류검출이 필요없는 불연속모드 인터리브드 PFC 부스트 컨버터의 연구)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.303-308
    • /
    • 2016
  • A light-emitting diode (LED) has been increasingly applied to various industrial fields and general lightings because of its high efficiency, low power consumption, environment-friendly characteristic and long lifetime. To drive this LED lighting, various types of power converters have been applied. Also, power factor correction (PFC) techniques play an important role in the power supply technology. In this paper, design and control of a DCM interleaved boost PFC converter is discussed. The proposed converter can reduce current ripples at input and output side by cancelling an each phase of inductor currents. Since the IC does not require the auxiliary winding of inductor for current detection, simple PFC circuit is achieved. Therefore, it contributes to increase efficiency and downsize the whole system volume, cost. Also, the performance of the proposed system is demonstrated through experiments.

New Single Stage PFC Full Bridge Converter (새로운 단일전력단 역률보상 풀브리지 컨버터)

  • 임창섭;권순걸;조정구;송두익
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.655-660
    • /
    • 2003
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.