• Title/Summary/Keyword: Oxide Selectivity

Search Result 270, Processing Time 0.025 seconds

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.

Development of Cesium-selective Paramagnetic Core Inorganic Composite Agent for Water Decontamination (수질오염 제염을 위한 세슘 선택성 상자성 코어 무기복합제염제 개발)

  • Seong Pyo Hong;Bo-Sun Kang
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Large amounts of liquid radioactive waste or radioactive contaminated water could be produced during the treatment of radiation accidents or during the dismantling and decontamination process of nuclear power plants. Since most of the decontamination agents to date are difficult to recover after adsorption of radioactive isotopes, their use in open environments such as rivers, reservoirs, or oceans is limited. In this study, as a radioactive decontamination agent that can overcome the current limitations when used in an open environment, a paramagnetic core inorganic composite (PMCIC) decomposite agent with high selectivity to cesium ions was developed. PMCore was prepared by synthesizing paramagnetic iron oxide nanoparticles, and inorganic crystals such as metal-ferrocyanide were conjugated to the surface so that PMCore could be selective to cesium ions. The developed PMCIC could be easily recovered from the water by magnetism and could adsorb up to 94 μM of Cs atoms per 1 g of PMCIC.

Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.216-220
    • /
    • 2013
  • The etching characteristics of indium zinc oxide (IZO) in $Cl_2/Ar$ plasma were investigated, including the etch rate and selectivity of IZO. The IZO etch rate showed non-monotonic behavior with increasing $Cl_2$ fraction in the $Cl_2/Ar$ plasma, and with increasing source power, bias power, and process pressure. In the $Cl_2/Ar$ (75:25%) gas mixture, a maximum IZO etch rate of 87.6 nm/min and etch selectivity of 1.09 for IZO to $SiO_2$ were obtained. Owing to the relatively low volatility of the by-products formation, ion bombardment was required, in addition to physical sputtering, to obtain high IZO etch rates. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. These data suggested that the IZO etch mechanism was ion-enhanced chemical etching.

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

High Sensitivity and Selectivity of Array Gas Sensor through Glancing Angle Deposition Method

  • Kim, Gwang Su;Song, Young Geun;Kang, Chong yun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.407-411
    • /
    • 2020
  • In this study, we propose an array-type gas sensor with high selectivity and response using multiple oxide semiconductors. The sensor array was composed of SnO2 and In2O3, and the detection characteristics were improved by using Pt, Au, and Pd catalysts. All samples were deposited directly on the Pt interdigitated electrode (IDE) through the e-beam evaporator glancing angle deposition (GAD) method. They grew in the form of well-aligned nanorods at off-axis angles. The prepared SnO2 and In2O3 nanorod samples were exposed to CH3COCH3, C7H8, and NO2 gases in a 300℃ dry condition. Au-decorated SnO2, Au-decorated In2O3, and Pd-decorated In2O3 exhibited high selectivity for CH3COCH3, C7H8, and NO2, respectively. They demonstrated a high detection limit of the sub ppb level computationally. In addition, measurements from each sensor were executed in the 40% relative humidity condition. Although there was a slight reduction in detection response, high selectivity and distinguishable detection characteristics were confirmed.

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

Dry Etching of Polysilicon by the RF Power and HBr Gas Changing in ICP Poly Etcher (ICP Poly Etcher를 이용한 RF Power와 HBr Gas의 변화에 따른 Polysilicon의 건식식각)

  • Nam, S.H.;Hyun, J.S.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.630-636
    • /
    • 2006
  • Scale down of semiconductor gate pattern will make progress centrally line width into transistor according to the high integration and high density of flash memory semiconductor. Recently, the many researchers are in the process of developing research for using the ONO(oxide-nitride-oxide) technology for the gate pattern give body to line breadth of less 100 nm. Therefore, etch rate and etch profile of the line width detail of less 100 nm affect important factor in a semiconductor process. In case of increasing of the platen power up to 50 W at the ICP etcher, etch rate and PR selectivity showed good result when the platen power of ICP etcher has 100 W. Also, in case of changing of HBr gas flux at the platen power of 100 W, etch rate was decreasing and PR selectivity is increasing. We founded terms that have etch rate 320 nm/min, PR selectivity 3.5:1 and etch slope have vertical in the case of giving the platen power 100 W and HBr gas 35 sccm at the ICP etcher. Also notch was not formed.

Oxide Planarization of Trench Structure using Chemical Mechanical Polishing(CMP) (기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화)

  • 김철복;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.838-843
    • /
    • 2002
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The reverse moat etch process has been used for the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process with conventional low selectivity slurries. Thus, the process became more complex, and the defects were seriously increased. In this paper, we studied the direct STI-CMP process without reverse moat etch step using high selectivity slurry(HSS). As our experimental results show, it was possible to achieve a global planarization without the complicated reverse moat process, the STI-CMP process could be dramatically simplified, and the defect level was reduced. Therefore the throughput, yield, and stability in the ULSI semiconductor device fabrication could be greatly improved.

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF