DOI QR코드

DOI QR Code

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen (School of Chemical and Biomedical Engineering, Nanyang Technological University) ;
  • Samarasinghe, S.A.S.C. (School of Chemical and Biomedical Engineering, Nanyang Technological University) ;
  • Bae, Tae-Hyun (School of Chemical and Biomedical Engineering, Nanyang Technological University)
  • Received : 2018.02.06
  • Accepted : 2018.06.25
  • Published : 2018.11.25

Abstract

High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

Keywords

Acknowledgement

Supported by : Ministry of Education, Singapore

References

  1. A.D. Cuellar, M.E. Webber, Environ. Res. Lett. 3 (2008) 034002. https://doi.org/10.1088/1748-9326/3/3/034002
  2. S. Cavenati, C.A. Grande, A.E. Rodrigues, C. Kiener, U. Muller, Ind. Eng. Chem. Res. 47 (2008) 6333. https://doi.org/10.1021/ie8005269
  3. X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, RSC Adv. 5 (2015) 24399. https://doi.org/10.1039/C5RA00666J
  4. A. Petersson, A. WeLLInGer, IEA Bioenergy 20 (2009) 1.
  5. F. Bauer, T. Persson, C. Hulteberg, D. Tamm, Biofuels Bioprod. Bior. 7 (2013) 499. https://doi.org/10.1002/bbb.1423
  6. D.R. Paul, Y.P. Yampol'skii, Polymeric Gas Separation Membranes, CRC press, 1993.
  7. L.M. Robeson, J. Membr. Sci. 62 (1991) 165. https://doi.org/10.1016/0376-7388(91)80060-J
  8. L.M. Robeson, J. Membr. Sci. 320 (2008) 390. https://doi.org/10.1016/j.memsci.2008.04.030
  9. S. Basu, A.L. Khan, A. Cano-Odena, C. Liu, I.F. Vankelecom, Chem. Soc. Rev. 39 (2010) 750. https://doi.org/10.1039/B817050A
  10. M.B. HAGG, J.A. Lie, A. Lindbrathen, Ann. N. Y. Acad. Sci. 1 (984) (2003) 329.
  11. A. Leenaars, K. Keizer, A. Burggraaf, J. Mater. Sci. 19 (1984) 1077. https://doi.org/10.1007/BF01120016
  12. A. Tavolaro, E. Drioli, Adv. Mater. 11 (1999) 975. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0
  13. M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K. Jeong, Ind. Eng. Chem. Res. 51 (2012) 2179. https://doi.org/10.1021/ie202038m
  14. Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Angew. Chem. Int. Ed. 122 (2010) 558. https://doi.org/10.1002/ange.200905645
  15. T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 32 (2007) 483. https://doi.org/10.1016/j.progpolymsci.2007.01.008
  16. P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Sep. Purif. Technol. 81 (2011) 243. https://doi.org/10.1016/j.seppur.2011.07.042
  17. M. Aroon, A. Ismail, T. Matsuura, M. Montazer-Rahmati, Sep. Purif. Technol. 75 (2010) 229. https://doi.org/10.1016/j.seppur.2010.08.023
  18. G. Dong, H. Li, V. Chen, J. Mater. Chem. A 1 (2013) 4610. https://doi.org/10.1039/c3ta00927k
  19. M.G. Suer, N. Bac, L. Yilmaz, J. Membr. Sci. 91 (1994) 77. https://doi.org/10.1016/0376-7388(94)00018-2
  20. R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Microporous Mesoporous Mater. 131 (2010) 13. https://doi.org/10.1016/j.micromeso.2009.11.035
  21. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Interfaces 7 (2015) 5528. https://doi.org/10.1021/acsami.5b00106
  22. X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang, J. Membr. Sci. 479 (2015) 1. https://doi.org/10.1016/j.memsci.2015.01.014
  23. O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O.Z.R. Yazaydin, J.T. Hupp, J. Am. Chem. Soc. 134 (2012) 15016. https://doi.org/10.1021/ja3055639
  24. K.C. Stylianou, W.L. Queen, CHIMIA Int. J. Chem. 69 (2015) 274. https://doi.org/10.2533/chimia.2015.274
  25. B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 44 (2015) 2421. https://doi.org/10.1039/C4CS00437J
  26. Y. Dai, J. Johnson, O. Karvan, D.S. Sholl, W. Koros, J. Membr. Sci. 401 (2012) 76.
  27. M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 361 (2010) 28. https://doi.org/10.1016/j.memsci.2010.06.017
  28. V. Nafisi, M.-B. Hagg, J. Membr. Sci. 459 (2014) 244. https://doi.org/10.1016/j.memsci.2014.02.002
  29. A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, J. Membr. Sci. 427 (2013) 48. https://doi.org/10.1016/j.memsci.2012.09.035
  30. Y. Dai, J.R. Johnson, O. Karvan, D.S. Sholl, W.J. Koros, J. Membr. Sci. 401-402 (2012) 76. https://doi.org/10.1016/j.memsci.2012.01.044
  31. Q. Song, S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, E. Sivaniah, Energy Environ. Sci. 5 (2012) 8359. https://doi.org/10.1039/c2ee21996d
  32. V. Nafisi, M.-B. Hagg, J. Membr. Sci. 459 (2014) 244. https://doi.org/10.1016/j.memsci.2014.02.002
  33. E.M. Mahdi, J.-C. Tan, Polymer 97 (2016) 31. https://doi.org/10.1016/j.polymer.2016.05.012
  34. E.M. Mahdi, J.-C. Tan, J. Membr. Sci. 498 (2016) 276. https://doi.org/10.1016/j.memsci.2015.09.066
  35. M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 361 (2010) 28. https://doi.org/10.1016/j.memsci.2010.06.017
  36. N.A.H.M. Nordin, A.F. Ismail, A. Mustafa, R.S. Murali, T. Matsuura, RSC Adv. 4 (2014) 52530. https://doi.org/10.1039/C4RA08460H
  37. A. Bhaskar, R. Banerjee, U. Kharul, J. Mater. Chem. A 2 (2014) 12962. https://doi.org/10.1039/C4TA00611A
  38. S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus, I.H. Musselman, J.P. Ferraris, Ind. Eng. Chem. Res. 52 (2013) 6991. https://doi.org/10.1021/ie400149e
  39. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Interfaces 7 (2015) 5528. https://doi.org/10.1021/acsami.5b00106
  40. J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42 (2017) 911. https://doi.org/10.1364/OL.42.000911
  41. Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B Chem. 252 (2017) 1179. https://doi.org/10.1016/j.snb.2017.07.144
  42. H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
  43. M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks, ACS Appl. Energy Mater.1 (2018) 707. https://doi.org/10.1021/acsaem.7b00164
  44. D.A. Grishanov, A.A. Mikhaylov, A.G. Medvedev, J. Gun, P.V. Prikhodchenko, Z.J. Xu, A. Nagasubramanian, M. Srinivasan, O. Lev, Energy Technol. 6 (2018) 127. https://doi.org/10.1002/ente.201700760
  45. H. Koolivand, A. Sharifa, E. Chehrazi, M.R. Kashani, S.M.R. Paran, Polym. Sci. Ser. A 58 (2016) 801. https://doi.org/10.1134/S0965545X16050084
  46. C. Duan, X. Jie, D. Liu, Y. Cao, Q. Yuan, J. Membr. Sci. 466 (2014) 92. https://doi.org/10.1016/j.memsci.2014.04.024
  47. M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, A. Chmielewski, J. Hazard. Mater. 144 (2007) 698. https://doi.org/10.1016/j.jhazmat.2007.01.098
  48. J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21 (2009) 1410. https://doi.org/10.1021/cm900166h
  49. T.H. Bae, J.S. Lee, W. Qiu, W.J. Koros, C.W. Jones, S. Nair, Angew. Chem. Int. Ed. 49 (2010) 9863. https://doi.org/10.1002/anie.201006141
  50. Y. Yang, K. Goh, R. Wang, T.-H. Bae, Chem. Commun. 53 (2017) 4254. https://doi.org/10.1039/C7CC00295E
  51. H. Gong, T.H. Nguyen, R. Wang, T.-H. Bae, J. Membr. Sci. 495 (2015) 169. https://doi.org/10.1016/j.memsci.2015.08.018
  52. Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 47 (2011) 2071. https://doi.org/10.1039/c0cc05002d
  53. G. Liu, L. Wang, B. Wang, T. Gao, D. Wang, RSC Adv. 5 (2015) 63553. https://doi.org/10.1039/C5RA09748G
  54. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53 (2013) 38. https://doi.org/10.1016/j.carbon.2012.10.013
  55. T.-H. Bae, J. Liu, J.S. Lee, W.J. Koros, C.W. Jones, S. Nair, J. Am. Chem. Soc. 131 (2009) 14662. https://doi.org/10.1021/ja907435c
  56. H. Gong, S.S. Lee, T.-H. Bae, Microporous Mesoporous Mater. 237 (2017) 82. https://doi.org/10.1016/j.micromeso.2016.09.017
  57. M. Amirilargani, B. Sadatnia, J. Membr. Sci. 469 (2014) 1. https://doi.org/10.1016/j.memsci.2014.06.034
  58. S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus Jr., I.H. Musselman, J.P. Ferraris, Ind. Eng. Chem. Res. 52 (2013) 6991. https://doi.org/10.1021/ie400149e
  59. N.P. Patel, J.M. Zielinski, J. Samseth, R.J. Spontak, Macromol. Chem. Phys. 205 (2004) 2409. https://doi.org/10.1002/macp.200400356
  60. L. Nicolais, M. Narkis, Polym. Eng. Sci. 11 (1971) 194. https://doi.org/10.1002/pen.760110305
  61. M. Ionita, A.M. Pandele, L. Crica, L. Pilan, Compos. B Eng. 59 (2014) 133. https://doi.org/10.1016/j.compositesb.2013.11.018
  62. V. Nafisi, M.-B. Hagg, Sep. Purif. Technol. 128 (2014) 31. https://doi.org/10.1016/j.seppur.2014.03.006
  63. M. Askari, T.-S. Chung, J. Membr. Sci. 444 (2013) 173. https://doi.org/10.1016/j.memsci.2013.05.016
  64. H. Huang, Y. Ying, X. Peng, J. Mater. Chem. A. 2 (2014) 13772. https://doi.org/10.1039/C4TA02359E
  65. S. Wang, Y. Wu, N. Zhang, G. He, Q. Xin, X. Wu, H. Wu, X. Cao, M.D. Guiver, Z. Jiang, Energy Environ. Sci. 9 (2016) 3107. https://doi.org/10.1039/C6EE01984F
  66. H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J.R. Caro, J. Am. Chem. Soc. 131 (2009) 16000. https://doi.org/10.1021/ja907359t

Cited by

  1. Graphene-Incorporated Biopolymeric Mixed-Matrix Membrane for Enhanced CO2 Separation by Regulating the Support Pore Filling vol.10, pp.33, 2018, https://doi.org/10.1021/acsami.8b09377
  2. Recent progress in gas separation using functionalized graphene nanopores and nanoporous graphene oxide membranes vol.134, pp.5, 2018, https://doi.org/10.1140/epjp/i2019-12612-4
  3. Graphene-Based Membranes for CO2/CH4 Separation: Key Challenges and Perspectives vol.9, pp.14, 2018, https://doi.org/10.3390/app9142784
  4. Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers vol.9, pp.8, 2018, https://doi.org/10.3390/membranes9080098
  5. Trends in Solid Adsorbent Materials Development for CO2 Capture vol.11, pp.38, 2019, https://doi.org/10.1021/acsami.9b08487
  6. Mixed-matrix membranes for CO2 separation: role of the third component vol.7, pp.43, 2018, https://doi.org/10.1039/c9ta09012f
  7. Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation vol.8, pp.None, 2018, https://doi.org/10.3389/fchem.2020.00058
  8. A New Industrial Technology for Mass Production of Graphene/PEBA Membranes for CO 2 /CH 4 Selectivity with High Dispersion, Thermal and Mechanical Performance vol.12, pp.4, 2018, https://doi.org/10.3390/polym12040831
  9. Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation vol.30, pp.4, 2020, https://doi.org/10.14579/membrane_journal.2020.30.4.260
  10. Zeolite imidazolate framework (ZIF)‐based mixed matrix membranes for CO2 separation: A review vol.137, pp.33, 2018, https://doi.org/10.1002/app.48968
  11. MOF Nanosheet-Based Mixed Matrix Membranes with Metal-Organic Coordination Interfacial Interaction for Gas Separation vol.12, pp.43, 2018, https://doi.org/10.1021/acsami.0c14639
  12. Graphene-based Membranes for H 2 Separation: Recent Progress and Future Perspective vol.10, pp.11, 2020, https://doi.org/10.3390/membranes10110336
  13. Graphene‐Based Advanced Membrane Applications in Organic Solvent Nanofiltration vol.31, pp.6, 2018, https://doi.org/10.1002/adfm.202006949
  14. Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part II: Gas Separation Properties toward Fluorinated Greenhouse Gases vol.11, pp.3, 2018, https://doi.org/10.3390/nano11030582
  15. Molecular Siting of C1-C6 n-Alkanes in ZIF-4: A Hybrid Monte Carlo Study vol.125, pp.29, 2018, https://doi.org/10.1021/acs.jpcc.1c03897
  16. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation vol.13, pp.15, 2018, https://doi.org/10.3390/polym13152539
  17. Mixed Dimensional Nanostructure (UiO‐66‐Decorated MWCNT) as a Nanofiller in Mixed‐Matrix Membranes for Enhanced CO2/CH4 Separation vol.27, pp.43, 2018, https://doi.org/10.1002/chem.202101017
  18. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation vol.11, pp.9, 2021, https://doi.org/10.3390/membranes11090666
  19. Synergistic effect of hybridized TNT@GO fillers in CTA-based mixed matrix membranes for selective CO2/CH4 separation vol.282, pp.no.pb, 2018, https://doi.org/10.1016/j.seppur.2021.120128