DOI QR코드

DOI QR Code

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Received : 2018.07.30
  • Accepted : 2018.10.11
  • Published : 2018.11.30

Abstract

In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

Keywords

References

  1. V. K. Gupta, M. R. Ganjali, P. Norouzi, H. Khani, A. Nayak and S. Agarwal, Crit. Rev. Anal. Chem. 41, 282 (2011). https://doi.org/10.1080/10408347.2011.589773
  2. V. K. Gupta, S. Kumar, R. Singh, L. P. Singh, S. K. Shoora and B. Sethi, J. Mol. Liq. 195, 65 (2014). https://doi.org/10.1016/j.molliq.2014.02.001
  3. V. K. Gupta, B. Sethi, R. A. Sharma, S. Agarwal and A. Bharti, J. Mol. Liq. 177, 114 (2013). https://doi.org/10.1016/j.molliq.2012.10.008
  4. S. K. Srivastava, V. K. Gupta and S. Jain, Analyst 120, 495 (1995). https://doi.org/10.1039/an9952000495
  5. S. K. Srivastava, V. K. Gupta, M. K. Dwivedi and S. Jain, Anal. Proc. 32, 21 (1995). https://doi.org/10.1039/AI9953200021
  6. S. K. Srivastava, V. K. Gupta and S. Jain, Anal. Chem. 68, 1272 (1996). https://doi.org/10.1021/ac9507000
  7. V. K. Gupta, N. Mergu, L. K. Kumawat and A. K. Singh, Sens. Actuators B Chem. 207, 216 (2015). https://doi.org/10.1016/j.snb.2014.10.044
  8. V. K. Gupta, N. Mergu, L. K. Kumawat and A. K. Singh, Talanta 144, 80 (2015). https://doi.org/10.1016/j.talanta.2015.05.053
  9. V. K. Gupta, A. K. Singh and L. K. Kumawat, Sens. Actuators B Chem. 195, 98 (2014). https://doi.org/10.1016/j.snb.2013.12.092
  10. V. K. Gupta, H. Karimi-Maleh and R. Sadegh, Int. J. Electrochem. Sci. 10, 303 (2015).
  11. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi and V. K. Gupta, RSC Adv. 5, 18438 (2015). https://doi.org/10.1039/C4RA15637D
  12. V. K. Gupta, N. Atar, M. L. Yola, Z. Ustundag and L. Uzun, Water Res. 48, 210 (2014). https://doi.org/10.1016/j.watres.2013.09.027
  13. H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M. L. Yola, V. K. Gupta and A. A. Ensafi, Ind. Eng. Chem. Res. 54, 3634 (2015). https://doi.org/10.1021/ie504438z
  14. M. L. Yola, V. K. Gupta, T. Eren, A. Emersen and N. Atar, Electrochim. Acta 120, 204 (2014). https://doi.org/10.1016/j.electacta.2013.12.086
  15. V. K. Gupta, A. Nayak, B. Singhal and S. Agarwal, Comb. Chem. High Throughput Screen. 14, 284 (2011). https://doi.org/10.2174/138620711795222437
  16. V. K. Gupta, L. P. Singh, R. Singh, N. Upadhyay, S. P. Kaur and B. Sethi, J. Mol. Liq. 174, 11 (2012). https://doi.org/10.1016/j.molliq.2012.07.016
  17. S. Karthikeyan, V. K. Gupta, R. Boopathy, A. Titus and G. Sekaran, J. Mol. Liq. 173, 153 (2012). https://doi.org/10.1016/j.molliq.2012.06.022
  18. M. H. Dehghani, D. Sanaei, I. Ali and A. Bhatnagar, J. Mol. Liq. 215, 671 (2016). https://doi.org/10.1016/j.molliq.2015.12.057
  19. Z. Wang and X. Cao, Process Biochem. 50, 1136 (2015). https://doi.org/10.1016/j.procbio.2015.04.013
  20. J. Srivastava and M. Singh, Anal. Methods 8, 1026 (2016). https://doi.org/10.1039/C5AY03048J
  21. M. Singh, A. Kumar and N. Tarannum, Anal. Bioanal. Chem. 405, 4245 (2013). https://doi.org/10.1007/s00216-013-6812-6
  22. N. Tarannum and M. Singh, Anal. Methods 4, 3019 (2012). https://doi.org/10.1039/c2ay25365h
  23. D. Le Corre, J. Bras and A. Dufresne, Biomacromolecules 11, 1139 (2010). https://doi.org/10.1021/bm901428y
  24. M. E. El-Naggar, M. H. El-Rafie, M. A. El-sheikh, G. S. El-Feky and A. Hebeish, Int. J. Biol. Macromol. 81, 718 (2015). https://doi.org/10.1016/j.ijbiomac.2015.09.005
  25. H. Kim, A. A. Abdala and C. W. Macosko, Macromolecules 43, 6515 (2010). https://doi.org/10.1021/ma100572e
  26. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Prog. Mater. Sci. 56, 1178 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
  27. M. L. Yola and N. Atar, Appl. Surf. Sci. 458, 648 (2018). https://doi.org/10.1016/j.apsusc.2018.07.142
  28. N. Atar, M. L. Yola and T. Eren, Appl. Surf. Sci. 362, 315 (2016). https://doi.org/10.1016/j.apsusc.2015.11.222
  29. M. L. Yola, V. K. Gupta and N. Atar, Mater. Sci. Eng. C 61, 368 (2016). https://doi.org/10.1016/j.msec.2015.12.057
  30. B. Ertan, T. Eren, I. Ermis, H. Saral, N. Atar and M. L. Yola, J. Colloid Interface Sci. 470, 14 (2016). https://doi.org/10.1016/j.jcis.2016.02.036
  31. M. L. Yola and N. Atar, J. Electrochem. Soc. 164, B223 (2017). https://doi.org/10.1149/2.1411706jes
  32. M. L. Yola and N. Atar, J. Electrochem. Soc. 165, H1 (2018). https://doi.org/10.1149/2.0651802jes
  33. M. L. Yola, T. Eren and N. Atar, J. Electrochem. Soc. 163, B588 (2016). https://doi.org/10.1149/2.0311613jes
  34. M. L. Yola, N. Atar, T. Eren, H. Karimi-Maleh and S. Wang, RSC Adv. 5, 65953 (2015). https://doi.org/10.1039/C5RA07443F
  35. M. L. Yola and N. Atar, Curr. Anal. Chem. 13, 13 (2017).
  36. M. L. Yola, C. Gode and N. Atar, Electrochim Acta 246, 135 (2017). https://doi.org/10.1016/j.electacta.2017.06.053
  37. N. Atar and M. L. Yola, J. Electrochem. Soc. 165, H255 (2018). https://doi.org/10.1149/2.1311805jes
  38. J. Li, X. Wang, H. Duan, Y. Wang and C. Luo, Mater. Sci. Eng. C 64, 391 (2016). https://doi.org/10.1016/j.msec.2016.04.003
  39. S. H. Kim, J. W. Lee and I. H. Yeo, Electrochim. Acta 45, 2889 (2000). https://doi.org/10.1016/S0013-4686(00)00364-9
  40. J. P. E. Spencer, P. Jenner, S. E. Daniel, A. J. Lees, D. C. Marsden and B. Halliwell, J. Neurochem. 71, 2112 (1998).
  41. L. Olson, O. Backlund, T. Ebendal, R. Freedman, B. Hamberger, P. Hansson, B. Hoffer, U. Lindblom, B. Meyerson, I. Stromberg, O. Sydow and A. Seiger, Arch Neurol. 48, 373 (1991). https://doi.org/10.1001/archneur.1991.00530160037011
  42. Z. L. Hegedus and M. D. Altschule, Arch. Int. Pharmacodyn. Ther. 186, 48 (1970).
  43. Y. C. Lee, N. J. Nassikas and D. J. Clauw, Arthritis Res. Ther. 13, 1 (2011).
  44. S. F. Kemp, R. F. Lockey and F. E. R. Simons, Allergy 63, 1061 (2008). https://doi.org/10.1111/j.1398-9995.2008.01733.x
  45. P. Y. Gueugniaud, J. S. David, E. Chanzy, H. Hubert, P. Y. Dubein, P. Mauriaucourt, C. Braganca, X. Billeres, M. P. Clotteau-Lambert, P. Fuster, D. Thiercelin and G. Debaty, N. Engl. J. Med. 359, 21 (2008). https://doi.org/10.1056/NEJMoa0706873
  46. T. Tavana, M. A. Khalilzadeh, H. K. Maleh, A. A. Ensafi, H. Beitollahi and D. Zareyee, J. Mol. Liq. 168, 69 (2012). https://doi.org/10.1016/j.molliq.2012.01.009
  47. N. Ersoz and S. C. Finestone, Br. J. Anaesth. 43, 709 (1971). https://doi.org/10.1093/bja/43.7.709
  48. B. Z. Horowitz, S. Jadallah and R. W. Derlet, Ann. Emerg. Med. 28, 725 (1996). https://doi.org/10.1016/S0196-0644(96)70100-2
  49. A. K. Mishra, A. Mishra and P. Chattopadhyay, Appl. Sci. Res. 2, 251 (2010).
  50. Y. M. Guo, J. H. Yang, X. Wu and A. Q. Du, J. Fluoresc. 15, 131 (2005). https://doi.org/10.1007/s10895-005-2520-8
  51. Y. Zhao, S. Zhao, J. Huang and F. Ye, Talanta 85, 2650 (2011). https://doi.org/10.1016/j.talanta.2011.08.032
  52. J. A. Ni, H. X. Ju, H. Y. Chen and D. Leech, Anal. Chim. Acta 378, 151 (1999). https://doi.org/10.1016/S0003-2670(98)00569-8
  53. B. Y. Huang, Y. C. Chen, G. R. Wang and C. Y. Liu, J. Chromatogr. A 1218, 849 (2011). https://doi.org/10.1016/j.chroma.2010.12.054
  54. B. B. Prasad, A. Prasad, M. P. Tiwari and R. Madhuri, Biosens. Bioelectron. 45, 114 (2013). https://doi.org/10.1016/j.bios.2013.01.042
  55. H. H. Li, H. H. Wang, W. T. Li, X. X. Fang, X. C. Guo, W. H. Zhou, X. Cao, D. X. Kou, Z. J. Zhou and S. X. Wu, Sens. Actuators B 222, 1127 (2016). https://doi.org/10.1016/j.snb.2015.08.018
  56. P. V. Narayana, T. M. Reddy, P. Gopal, M. M. Reddy and G. R. Naidu, Mater. Sci. Eng. C 56, 57 (2015). https://doi.org/10.1016/j.msec.2015.06.011
  57. Y. Wu, X. Feng, S. Zhou, H. Shi, H. Wu, S. Zhao and W. Song, Microchim. Acta 180, 1325 (2013). https://doi.org/10.1007/s00604-013-1063-y
  58. L. Liu, Q. Li, N. Li, J. Ling, R. Liu, Y. Wang, L. Sun, X. H. Chen and K. Bi, J. Sep. Sci. 34, 1198 (2011). https://doi.org/10.1002/jssc.201000799
  59. C. Ji, J. Walton, Y. Su and M. Tella, Anal. Chim Acta 670, 84 (2010). https://doi.org/10.1016/j.aca.2010.04.051
  60. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  61. S. Umrao, T. K. Gupta, S. Kumar, V. K. Singh, M. K. Sultania, J. H. Jung, I. K. Oh and A. Srivastava, Appl. Mater. Interfaces 7, 19831 (2015). https://doi.org/10.1021/acsami.5b05890
  62. R. Rutkaite, J. Bendoraitiene, R. Klimaviciute and A. Zemaitaitis, Int. J. Biol. Macromol. 50, 687 (2012). https://doi.org/10.1016/j.ijbiomac.2012.01.037
  63. E. Wierzbicka and G. D. Sulka, J. Electroanal. Chem. 762, 43 (2016). https://doi.org/10.1016/j.jelechem.2015.12.013
  64. Y. Zeng, J. Yang and K. Wu, Electrochim. Acta 53, 4615 (2008). https://doi.org/10.1016/j.electacta.2008.01.011
  65. J. Li, E. Shangguan, D. Guo, F. Gao, Q. Li, X. Z. Yuan and H. Wang, Electrochim. Acta 186, 209 (2015). https://doi.org/10.1016/j.electacta.2015.10.142
  66. S. C. Avedano, G. A. Angles, A. R. Hernandez, M. A. Romoro-Remo and M. T. Ramirez-Silva, Spectrochim. Acta A 61, 305 (2005). https://doi.org/10.1016/j.saa.2004.03.023
  67. D. A. Skoog, F. T. Holler and T. A. Neiman, Principles of Instrumental Analysis, 5th edn. (Harcourt Brace College Publisher, Florida, 1998), pp. 13-14.
  68. P. Pradhan, R. J. Mascarenhas, T. Thomas, I. N. N. Namboothiri, O. J. D'Souza and Z. Mekhalif, J. Electroanal. Chem. 732, 30 (2014). https://doi.org/10.1016/j.jelechem.2014.08.023
  69. L. R. Sartori, W. J. R. Santos, L. T. Kubota, M. G. Segatelli and C. R. T. Tarley, Mater. Sci. Eng. C 31, 114 (2011). https://doi.org/10.1016/j.msec.2010.08.012
  70. M. Mazloum-Ardakani, H. Kholghi, M. A. Sheikh-Mohsenia, A. Benvidi and H. Naeimi, J. Nanostruct. 2, 145 (2012).
  71. R. N. Goyal and B. Agrawal, Anal. Chim Acta 743, 33 (2012). https://doi.org/10.1016/j.aca.2012.06.053
  72. D. D. Justino, A. L. A. Lage, D. E. P. Souto, J. V. da Silva, W. T. P. d Santos, C. S. Luz and F. S. Damos, J. Electroanal. Chem. 703, 158 (2013). https://doi.org/10.1016/j.jelechem.2013.05.024
  73. T. Thomas, R. J. Mascarenhas, P. Martish, Z. Mekhalif and B. E. K. Swamy, Mater. Sci. Eng. C 33, 3294 (2013). https://doi.org/10.1016/j.msec.2013.04.010
  74. H. Beitollahi, M. A. Taher and A. Hosseini, Measurement 51, 156 (2014). https://doi.org/10.1016/j.measurement.2014.02.008
  75. B. B. Prasad, A. Srivastava, A. Prasad and M. P. Tiwari, Colloids Surf. B Biointerfaces 113, 69 (2014). https://doi.org/10.1016/j.colsurfb.2013.08.046
  76. F. Wei, G. Xu, Y. Wu, X. Wang, J. Yang, L. Liu, P. Zhou and Q. Hu, Sens. Actuators B 229, 38 (2016). https://doi.org/10.1016/j.snb.2016.01.113