DOI QR코드

DOI QR Code

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Cho, Youngjin (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Bae, Sang-Eun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Tae-Hong (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2018.09.03
  • Accepted : 2018.10.19
  • Published : 2019.06.30

Abstract

We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.

Keywords

E1JTC5_2019_v10n2_123_f0001.png 이미지

Fig. 1. Schematic illustration for preparation of a NiPB/GO composite solution

E1JTC5_2019_v10n2_123_f0003.png 이미지

Fig. 3. Raman spectra (a) and XRD patterns (b) of GO, NiPB, and NiPB/GO. SEM (c) and TEM (d) images of NiPB/GO; the inset of (d) shows the selected area electron diffraction pattern of NiPB/GO.

E1JTC5_2019_v10n2_123_f0004.png 이미지

Fig. 4. CVs of NiPB and NiPB/GO in 1 M NaNO3 electrolyte at a scan rate of 50 mV·s-1 (a), CVs of NiPB/GO in various electrolytes (1 M of LiNO3, NaNO3, KNO3, and CsNO3) at a scan rate of 5 mV·s-1 (b), and mixture solutions of 0.1 M Na+ and different concentrations of Cs+ at a scan rate of 5 mV·s-1 (c).

E1JTC5_2019_v10n2_123_f0005.png 이미지

Fig. 5. Normalized capacity of the NiPB- and NiPB/GO-modified electrodes during CV measurements for 1500 cycles (in 1 M of NaNO3; potential range: 0-1 V; scan rate: 100 mV·s-1) (a), CVs of electrochemically treated NiPB/GO (NiPB/GOA) in 1 M of alkali electrolytes at a scan rate of 5 mV·s-1 (b), and comparison of CVs of NiPB/GO (black solid) and NiPB/ GO-A (red dash) in 1 M of CsNO3 at 5 mV·s-1 (c).

E1JTC5_2019_v10n2_123_f0006.png 이미지

Fig. 2. Schematic illustration of electrochemical reversible intercalation/deintercalation process of alkali metal ions at NiPB.

Table 1. Half-potentials and charge densities of NiPB/GO and NiPB/GO-A modified electrode in various electrolytes

E1JTC5_2019_v10n2_123_t0001.png 이미지

References

  1. P. Coughtrey and M. Thorne, "Radionuclide distribution and transport in terrestrial and aquatic ecosystems" A Critical Review of Data. 1983, Vol. 1, A. A. Balkema, Rotterdam.
  2. T. J. Yasunari, A. Stohl, R. S. Hayano, J. F. Burkhart, S. Eckhardt, and T. Yasunari, Proc. Natl. Acad. Sci., 2011, 108(49), 19530-19534. https://doi.org/10.1073/pnas.1112058108
  3. G. Brumfiel, Nature, 2011, 472, 146-147. https://doi.org/10.1038/472146a
  4. V. Avramenko, S. Bratskaya, V. Zheleznov, I. Sheveleva, O. Voitenko, and V. Sergienko, J. Hazard. Mater., 2011, 186(2-3), 1343-1350. https://doi.org/10.1016/j.jhazmat.2010.12.009
  5. T. G. Hinton, D. I. Kaplan, A. S. Knox, D. P. Coughlin, R. V. Nascimento, S. I. Watson, D. E. Fletcher, and B.-J. Koo, Environ. Sci. Technol., 2006, 40(14), 4500-4505. https://doi.org/10.1021/es060124x
  6. P. Dhami, N. Dudwadkar, P. Achuthan, U. Jambunathan, and P. Dey, Sep. Sci. Technol., 2004, 39(13), 3143-3150. https://doi.org/10.1081/SS-200032981
  7. A. Abbaspour and M. A. Mehrgardi, Anal. Chem., 2004, 76(19), 5690-5696. https://doi.org/10.1021/ac049421f
  8. L.-D. Feng, J.-M. Shen, X.-H. Li, and J.-J. Zhu, J. Phys. Chem. C, 2008, 112(20), 7617-7623. https://doi.org/10.1021/jp801129c
  9. F. Arduini, A. Cassisi, A. Amine, F. Ricci, D. Moscone, and G. Palleschi, J. Electroanal. Chem., 2009, 626(1-2), 66-74. https://doi.org/10.1016/j.jelechem.2008.11.003
  10. R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, and J. Chen, RSC Adv., 2014, 4(71), 37600-37605. https://doi.org/10.1039/C4RA05397D
  11. M. Hu, S. Furukawa, R. Ohtani, H. Sukegawa, Y. Nemoto, J. Reboul, S. Kitagawa, and Y. Yamauchi, Angew. Chem. Int. Ed., 2012, 51, 984. https://doi.org/10.1002/anie.201105190
  12. J. Kamenik, H. Dulaiova, F. Sebesta, and K. Stastna, J. Radioanal. Nucl. Chem., 2013, 296(2), 841-846. https://doi.org/10.1007/s10967-012-2007-4
  13. R. Chen, M. Asai, C. Fukushima, M. Ishizaki, M. Kurihara, M. Arisaka, T. Nankawa, M. Watanabe, T. Kawamoto, and H. Tanaka, J. Radioanal. Nucl. Chem, 2015, 303(2), 1491-1495. https://doi.org/10.1007/s10967-014-3588-x
  14. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol., 2008, 3(5), 270. https://doi.org/10.1038/nnano.2008.83
  15. Y. Haldorai, A. E. Vilian, M. Rethinasabapathy, Y. S. Huh, and Y.-K. Han, Sens. Actuators B Chem., 2017, 247, 61-69. https://doi.org/10.1016/j.snb.2017.02.181
  16. J. Yu and T. H. Kim, J. Electrochem. Sci. Technol., 2017, 8(4), 274-281. https://doi.org/10.5229/JECST.2017.8.4.274
  17. C.-H. Lee, S.-E. Bae, C.-W. Lee, D.-H. Jung, C.-S. Kim, and D.-R. Shin, Int. J. Hydrogen Energy, 2001, 26(2), 175-178. https://doi.org/10.1016/S0360-3199(00)00056-2
  18. C.-H. Lee, C.-W. Lee, D.-I. Kim, and S.-E. Bae, Int. J. Hydrogen Energy, 2002, 27(4), 445-450. https://doi.org/10.1016/S0360-3199(01)00135-5
  19. Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, ACS nano, 2010, 4(2), 1227-1233. https://doi.org/10.1021/nn901689k
  20. J. Yoo, Y. Kim, C.-W. Lee, H. Yoon, S. Yoo, and H. Jeong, J. Electrochem. Sci. Technol., 2017, 8(3), 250-256. https://doi.org/10.5229/JECST.2017.8.3.250
  21. E. M. Jin, J. G. Lim, and S. M. Jeong, J. Ind. Eng. Chem., 2017, 54, 421-427. https://doi.org/10.1016/j.jiec.2017.06.022
  22. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano Res., 2008, 1(3), 203-212. https://doi.org/10.1007/s12274-008-8021-8
  23. S. Park and R. S. Ruoff, Nat. Nanotechnol., 2009, 4(4), 217. https://doi.org/10.1038/nnano.2009.58
  24. H. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace, and D. Li, Adv. Mater, 2008, 20(18), 3557-3561. https://doi.org/10.1002/adma.200800757
  25. D. Chen, H. Feng, and J. Li, Chem. Rev., 2012, 112(11), 6027-6053. https://doi.org/10.1021/cr300115g
  26. A. K. Geim and K. S. Novoselov, Nat. mater., 2007, 6, 183. https://doi.org/10.1038/nmat1849
  27. C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 2010, 48(8), 2127-2150. https://doi.org/10.1016/j.carbon.2010.01.058
  28. E. Jin, X. Lu, L. Cui, D. Chao, and C. Wang, Electrochim. Acta, 2010, 55(24), 7230-7234. https://doi.org/10.1016/j.electacta.2010.07.029
  29. H. Yang, L. Sun, J. Zhai, H. Li, Y. Zhao, and H. Yu, J. Mater. Chem. A, 2014, 2(2), 326-332. https://doi.org/10.1039/C3TA13548A
  30. W. Chen, J. Tang, and X.-H. Xia, J. Phys. Chem., 2009, 113, 21577.
  31. S. M. Chen, C. Y. Liou, and R. Thangamuthu, Electroanal., 2007, 19(23), 2457-2464. https://doi.org/10.1002/elan.200704002
  32. Y. Qing, J. Li, B. Kang, S. Chang, Y. Dai, Q. Long, and C. Yuan, J. Radioanal. Nucl. Chem., 2015, 304(2), 527-533. https://doi.org/10.1007/s10967-014-3876-5
  33. A. C. Ferrari and J. Robertson, Phys. Rev. B, 2000, 61, 14095. https://doi.org/10.1103/PhysRevB.61.14095
  34. J. W. Lee, S.-I. In, and J.-D. Kim, J. Electrochem. Sci. Technol., 2013, 4(1), 19-26. https://doi.org/10.5229/JECST.2013.4.1.19
  35. J. Reyes-Gomez, J. A. Medina, K. M. Jeerage, W. A. Steen, and D. T. Schwartz, J. Electrochem. Soc., 2004, 151(9), D87-D92. https://doi.org/10.1149/1.1776590
  36. R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Electrochim. Acta, 2013, 87, 119-125. https://doi.org/10.1016/j.electacta.2012.08.124
  37. H.-W. Lee, M. Pasta, R. Y. Wang, R. Ruffo, and Y. Cui, Faraday Discuss., 2014, 176, 69-81. https://doi.org/10.1039/C4FD00147H
  38. S. M. Haight, D. T. Schwartz, and M. A. Lilga, J. Electrochem. Soc., 1999, 146(5), 1866-1872. https://doi.org/10.1149/1.1391857
  39. W. A. Steen, S.-W. Han, Q. Yu, R. A. Gordon, J. O. Cross, E. A. Stern, G. T. Seidler, K. M. Jeerage, and D. T. Schwartz, Langmuir, 2002, 18(20), 7714-7721. https://doi.org/10.1021/la020352e
  40. T. R. Cataldi and G. E. De Benedetto, J. Electroanal. Chem., 1998, 458(1-2), 149-154. https://doi.org/10.1016/S0022-0728(98)00327-1
  41. Y. Lin and X. Cui, Chem. Commun., 2005, 17, 2226-2228. https://doi.org/10.1039/B306841B
  42. J. Lin, A. R. O. Raji, K. Nan, Z. Peng, Z. Yan, E. L. Samuel, D. Natelson, and J. M. Tour, Adv. Funct. Mater. 2014, 24(14), 2044-2048. https://doi.org/10.1002/adfm.201303023
  43. G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, ACS nano, 2015, 9(2), 1592-1599. https://doi.org/10.1021/nn506252u