DOI QR코드

DOI QR Code

Comparison of a Cation Exchange Membrane and a Ceramic Membrane in Electrosynthesis of Ammonium Persulfate by a Pilot Experimental Study

  • Zhou, Junbo (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology) ;
  • Wang, Chao (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology) ;
  • Guo, Yujing (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology) ;
  • Gao, Liping (College of Biochemical Engineering, Beijing Union University)
  • Received : 2018.07.19
  • Accepted : 2018.10.06
  • Published : 2019.06.30

Abstract

In order to improve the current efficiency and reduce the energy consumption in the electrosynthesis of ammonium persulfate, electrolytic properties of a perfluorosulfonic cation exchange membrane named PGN membrane and the $Al_2O_3$ ceramic membrane in the electrosynthesis of ammonium persulfate were studied and compared in a pilot electrolytic cell using a welded platinum titanium as the anode and a Pb-Sb alloy as the cathode. The effect of cell voltage, electrolyte flow rate and electrolysis time of the electrolytes on the current efficiency and the energy consumption were studied. The results indicated that the PGN membrane could improve current efficiency to 95.12% and reduce energy consumption to $1110kWh\;t^{-1}$ (energy consumption per ton of the ammonium persulfate generated) under the optimal operating conditions and the highest current efficiency of the $Al_2O_3$ ceramic membrane was 72.61% with its lowest energy consumption of $1779kWh\;t^{-1}$. Among 5 times of the electrolysis of the electrolytes, the lowest current efficiency of the PGN membrane was 85.25% with the highest energy consumption of $1244kWh\;t^{-1}$ while the lowest current efficiency of the $Al_2O_3$ ceramic membrane was 67.44% with the highest energy consumption of $1915kWh\;t^{-1}$, which suggested the PGN membrane could be used in the 5-stage electrolytic cell for the industrially continuous electrosynthesis of ammonium persulfate. Therefore the PGN membrane can be efficient to improve the current efficiency and reduce the energy consumption and can be applied in the industrial electrosynthesis of ammonium persulfate.

Keywords

E1JTC5_2019_v10n2_115_f0001.png 이미지

Fig. 1. Three dimensional diagram of the pilot experimental electrolytic cell

E1JTC5_2019_v10n2_115_f0002.png 이미지

Fig. 2. Diagram of the experimental apparatus

E1JTC5_2019_v10n2_115_f0003.png 이미지

Fig. 3. Current efficiency of the PGN membrane and the Al2O3 ceramic membrane at different cell voltage at an electrolyte flow rate of 1.5 L min-1

E1JTC5_2019_v10n2_115_f0004.png 이미지

Fig. 4. Energy consumption of the PGN membrane and the Al2O3 ceramic membrane at different cell voltage at an electrolyte flow rate of 1.5 L min-1

E1JTC5_2019_v10n2_115_f0005.png 이미지

Fig. 5. Current efficiency of the PGN membrane and the Al2O3 ceramic membrane at different electrolyte flow rate at the cell voltage of 4.5 V and 5.5 V, respectively

E1JTC5_2019_v10n2_115_f0006.png 이미지

Fig. 6. Energy consumption of the PGN membrane and the Al2O3 ceramic membrane at different electrolyte flow rate at the cell voltage of 4.5 V and 5.5 V, respectively

E1JTC5_2019_v10n2_115_f0007.png 이미지

Fig. 7. Effect of the electrolysis time of electrolytes on current efficiency

E1JTC5_2019_v10n2_115_f0008.png 이미지

Fig. 8. Effect of the electrolysis time of electrolytes on energy consumption

Table 1. The properties of the PGN membrane

E1JTC5_2019_v10n2_115_t0001.png 이미지

Table 2. The properties of the Al2O3 ceramic membrane

E1JTC5_2019_v10n2_115_t0002.png 이미지

References

  1. S.H. Lee, J.M. Koo, S.G. Oh, et al, Mater. Chem. Phy., 2017, 194, 313-321. https://doi.org/10.1016/j.matchemphys.2017.03.053
  2. M.K. Nizam, D. Sebastian, M.I. Kairi, et al., Sains Malay., 2017, 46, 1039-1045. https://doi.org/10.17576/jsm-2017-4607-05
  3. L.R. Bennedsen, In situ chemical oxidation: The Mechanisms and Applications of Chemical Oxidants for Remediation Purposes, Elsevier B.V., Amsterdam, 2014.
  4. N. Xu, Guangdong Chem. Ind. (Natural Science Edition), 2015, 42, 114-114.
  5. K.K. Hii, K. Hellgardt, G.H. Kelsall, et al., Apparatus and method for production of oxidants, WO/2016/193738A1.
  6. D. Liu, Chem. Eng. Des. Commun., 43, 107(2017).
  7. S.K. Amin, M.H. Roushdy, S.A. El-Sherbiny, et al, Int. J. Appl. Eng. Res., 2016, 11(12), 7708-7721.
  8. J.R. Davis, J.C. Baygents, J. Farrell, Electrochim. Acta, 2014, 44(7), 841-848.
  9. J.R. Davis, J.C. Baygents, J. Farrell, Electrochim. Acta, 2014, 44(7), 841-848.
  10. V.B. Martos, E. Herrero, J.M. Feliu, J. Electrochim. Acta, 2017, 241, 497-509. https://doi.org/10.1016/j.electacta.2017.04.162
  11. Z.F. Pan, L. An, T.S. Zhao, et al, Prog. in Energy. Combust. Sci, 2018, 66, 141-175. https://doi.org/10.1016/j.pecs.2018.01.001
  12. S. Paul, J. Electrochem. Sci. Technol., 2016, 7(2), 115-131. https://doi.org/10.5229/JECST.2016.7.2.115
  13. G.J. Hwanga, S.W. Kimb, D.M. In, et al., J. Ind. Eng. Chem., 2018, 60, 360-365. https://doi.org/10.1016/j.jiec.2017.11.023
  14. H. Feng, Y. Xiong, B. Wu, J. Chem. Ind. Eng.(China), 2017, 68, 4691-4701.
  15. H. Strathmann, A. Grabowski, G. Eigenberger, J. Ind. Eng. Chem. Res., 2013, 52(31), 10364-10379. https://doi.org/10.1021/ie4002102
  16. J. Zhao, P. Sun, L. Wang, et al., J. Zhengzhou Univ. (Engineering Science), 2006, 27, 109-112. https://doi.org/10.3969/j.issn.1671-6833.2006.01.027
  17. H. Nan, Y. Wang, Chem. Ind. Eng., 2013, 30, 53-58.
  18. J. Zhu, K.K. Hii, K. Hellgardt, J. Acs Sustain. Chem. Eng., 2016, 4, 2027-2036 https://doi.org/10.1021/acssuschemeng.5b01372
  19. C. Wang, J.B. Zhou, L.P. Gao, J. Electrochem. Sci. Technol., 2018, 9(1), 37-41. https://doi.org/10.5229/JECST.2018.9.1.37
  20. Y. Wan, S. Xia, Water. Purif. Technol., 2016, 35, 102-104.
  21. H. Vogt, Electrochim. Acta, 2012, 78, 183-187. https://doi.org/10.1016/j.electacta.2012.05.124
  22. A. Li, S. Wang, X. Song, Environ. Sci. Manag., 2017, 42, 102-105.
  23. K. Tangphant, K. Sudaprasert, S. Channarong, Russ. J. Electrochem., 2014, 50(3), 253-259. https://doi.org/10.1134/S1023193514030136
  24. D. Zhang, X. Song, J. Dong, Chlor-Alkali Ind., 2016, 52, 19-20.
  25. Y. Wang, Y. Xiong, J. Zhang, J. Southeast Univ., 2015, 45, 738-744. https://doi.org/10.3969/j.issn.1001-0505.2015.04.022