• Title/Summary/Keyword: Overconsolidated clays

Search Result 19, Processing Time 0.024 seconds

An Anisotropic Elasto-Plastic Constitutive Model Based on the Generalized Isotropic Hardening Rule for Clays (일반 등방경화규칙에 의거한 점토의 비등방 탄소성 구성모델)

  • 이승래;오세붕
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.17-32
    • /
    • 1994
  • To model the anisotropic behavior of soils in the case of reverse loading, an anisotropic hardening description is proposed on the basis of generalized isotropic hardening(GIH) rule. There is a core of the GIH rule in the allowance of the concept that the center of homology of isotropic hardening can be any proper stress states inside a yield surface. The plastic deformations could be represented for the condition of reverse loading, and an explicit constitutive relationship was formulated by utilizing a simple hardening function. The proposed hardening description has been compared with other anisotropic hardening models. For verification three sets of triaxial test results have been predicted for the drained and undrained behavior of overconsolidated clays and Ko consolidated clays.

  • PDF

A Study on the Stress History and Secondary Compression of Saturated Clays Subjected to Precompression (사전압밀된 포화점토의 응력이력과 2차압밀에 관한 연구)

  • 김형주
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.167-180
    • /
    • 1994
  • A series of long term consolidation tests were conducted under loading -unloading and loading(pc) -unloading(p.) -reloading(p,) conditions using reconstituted clay in order to investigate the effect of stress history on secondary consolidation characteristics and the applicability of the secondary consolidation model suggested by Bjerrum to overconsolidated clays. According to the test results, the secondary compression settlement affected by the stress history in the first half of experimental period and the coefficient of secondary compression, C‥‥ is dependent on overconsolidation ratio, OCR(p,1 p.), maBium OCR (p./p.), and unloading duration time. Moreover the coefficient of secondary consolidation in the latter half of experimental period Cn is mainly affected by OCR and it gradually reduces with OCR increment. Finally the comparison of the experimental results with the Bjerrum model indicates that the Bjerrum model can be applied beyond certain range of stress history in the overconsolidated clay.

  • PDF

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

Long-term Settlement of the Reclaimed Quasi-overconsolidated Clay Deposits (유사과압밀 준설매립지반의 장기압밀침하)

  • Lee, JIn-Soo;Lee, Choong-Ho;Chae, Young-Su;Baek, Won-Jin;Song, Byung-Gwan;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.43-50
    • /
    • 2008
  • Structures are frequently built on a dredged clay layer overlaid by a soft marine clay deposit in coastal areas of Korea. Large consolidation settlement usually occurs in the case and this may cause damages of super-structures. So, the evaluation of long-term consolidation settlement is very important in design and construction. Therefore, in this study, a long-term consolidation characteristics of marine dredged clays are investigated. Firstly, the relationship of $C_{\alpha}/C_c$ on marine dredged clays near Gwang-yang Port was evaluated. Secondly, long-term consolidation characteristics of the pseudo-preconsolidated ground were evaluated.

The Effects of Stress and Time History on Pore Pressure Parameter of Overconsoldated clay (과압밀점토의 간극수압계수에 응력이력과 시간이력이 미치는 영향)

  • 김수삼;김병일;한상재;신현영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.286-294
    • /
    • 2002
  • This study investigated the effects of stress and time history of overconsolidated clayey soils on pore pressure parameter, A. Laboratory tests were carried out under the conditions of both varying stress and time history. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. The time history is divided into (i) loading rate of recent stress path and (ii) rest time. Pore pressure parameters are different both in the magnitude and trend with the rotation angle, depending on the magnitude of overconsolidation ratio but not in a trend. In addition, the pore pressure parameters have no effects on the magnitude of length of recent stress path except the level of initially small strain, while loading rates of recent stress path have effects on it. Finally, the pore pressure parameters of overconsolidated clays increase with the existence of the rest time, until either the deviator stress exceeds 70 kPa or the strain up to 0.1%.

Numerical Analysis on Consolidation of Soft Clay by Sand Drain with Heat Injection (수치해석을 통한 샌드드레인과 열주입에 의한 연약지반의 압밀 해석)

  • Koy, Channarith;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.45-57
    • /
    • 2017
  • Temperature change affects consolidation behavior of soft clays. The increase of temperature in soft clays induces the increase of pore water pressure. The dissipation of the excess pore water pressure decreases volume and void ratio. Also, the consolidation rate is accelerated by high temperature which induces the decrease of viscosity of pore fluid. The effects of temperature on the consolidation behavior such as consolidation settlement, consolidation time, and pore water pressure were investigated in this study. A numerical analysis of hydro-mechanical (HM) and thermo-hydro-mechanical (THM) behavior was performed. The combination of heat injection and sand drain for consolidating the soft ground, with varying temperature (40 and $60^{\circ}C$) and sand drain diameter (40, 60, and 80 mm), was considered. The results show that the temperature inside soil specimen increases with the increase of the temperature of heating source and the diameter of sand drain. Moreover, the heat injection increases the excess pore water pressure and, accordingly, induces additional settlement in overconsolidated (OC) state and reduces the consolidation time in normally consolidated (NC) state.

Time-dependent behaviour of interactive marine and terrestrial deposit clay

  • Chen, Xiaoping;Luo, Qingzi;Zhou, Qiujuan
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.279-295
    • /
    • 2014
  • A series of one-dimensional consolidation tests and triaxial creep tests were performed on Nansha clays, which are interactive marine and terrestrial deposits, to investigate their time-dependent behaviour. Based on experimental observations of oedometer tests, normally consolidated soils exhibit larger secondary compression than overconsolidated soils; the secondary consolidation coefficient ($C_{\alpha}$) generally gets the maximum value as load approaches the preconsolidation pressure. The postsurcharge secondary consolidation coefficient ($C_{\alpha}$') is significantly less than $C_{\alpha}$. The observed secondary compression behaviour is consistent with the $C_{\alpha}/C_c$ concept, regardless of surcharging. The $C_{\alpha}/C_c$ ratio is a constant that is applicable to the recompression and compression ranges. Compared with the stage-loading test, the single-loading oedometer test can evaluate the entire process of secondary compression; $C_{\alpha}$ varies significantly with time and is larger than the $C_{\alpha}$ obtained from the stage-loading test. Based on experimental observations of triaxial creep tests, the creep for the drained state differs from the creep for the undrained state. The behaviour can be predicted by a characteristic relationship among axial strain rate, deviator stress level and time.

Stress-Path Dependent Deformation Characteristics of Anisotropic Cohesive Soil (응력경로(應力經路)에 따른 이방성(異方性) 점성토(粘性土)의 변형특성(變形特性))

  • Kwon, Oh Yeob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.133-141
    • /
    • 1989
  • Lightly overconsolidated clays are commonly anisotropic, and exibit substantial ranges of approximately linear behavior at stress levels which do not produce yielding. The theory of cross-anisotropic elasticity is adopted to predict the stress-strain behavior of such an anisotropic soil. Equivalent elastic parameters $A^*$ and $B^*$ which express the relationships of stress and strain in the theory have been proposed. It is shown that constitutive relationships derived from the theory represents well the mechanical response of anisotropic soil.

  • PDF

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: I. Constitutive Model (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석: I. 구성모델)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.121-130
    • /
    • 1999
  • The objective of this study is to perform finite element analyses(FEA) using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening model was then developed to solve the problem and its mathematical formulations and experimental verifications were also described. In a companion paper, the constitutive equation will be formulated for accurate and efficient solutions of FEA, and coded into a nonlinear analysis program, and finally a field problem will be analyzed. The proposed model includes the failure criterion of a von Mises type and the anisotropic hardening rule based on the generalized isotropic hardening description, which can model the nonlinearity and the anisotropy of the stress-strain relationship. As a result this study could verty the experimental results for UU triaxial tests, CU triaxial tests for overconsolidated samples, and anisotropic loading tests with the rotation of principal stress axes for $K_0$consolidated samples.

  • PDF