• Title/Summary/Keyword: Orthogonal Relation

Search Result 54, Processing Time 0.031 seconds

SOME RECURRENCE RELATIONS OF MULTIPLE ORTHOGONAL POLYNOMIALS

  • Lee, Dong-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.673-693
    • /
    • 2005
  • In this paper, we first find a necessary and sufficient condition for the existence of multiple orthogonal polynomials by the moments of a pair of measures $(d{\mu},\;dv)$ and then give representations for multiple orthogonal polynomials. We also prove four term recurrence relations for multiple orthogonal polynomials of type II and several interesting relations for multiple orthogonal polynomials are given. A generalized recurrence relation for multiple orthogonal polynomials of type I is found and then four term recurrence relations are obtained as a special case.

STRUCTURE RELATIONS OF CLASSICAL MULTIPLE ORTHOGONAL POLYNOMIALS BY A GENERATING FUNCTION

  • Lee, Dong Won
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1067-1082
    • /
    • 2013
  • In this paper, we will find some recurrence relations of classical multiple OPS between the same family with different parameters using the generating functions, which are useful to find structure relations and their connection coefficients. In particular, the differential-difference equations of Jacobi-Pineiro polynomials and multiple Bessel polynomials are given.

FINITE ORTHOGONAL POLYNOMIALS SATISFYING A SECOND ORDER DIFFERENTIAL EQUATION

  • Yoo, Byeong-Hoon;Lee, Dong-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.765-774
    • /
    • 2005
  • The orthogonality of polynomials plays an important role in many areas and in many cases only finite orthogonalities are used. Concerning this fact we find characterizations of a finite orthogonal polynomial system satisfying a second order differential equation and then give several examples.

Vibration Design of a Rigid Body Supported by Orthogonal Springs (직교스프링들에 의해 지지되는 강체의 진동 설계)

  • Jang, Seon-Jun;Lee, Jun-Ho;Choi, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.97-104
    • /
    • 2007
  • Vibration analysis of a rigid body supported by in-parallel linear springs can be greatly simplified by utilizing the conditions for a plane of symmetry. The vibration modes of an oscillatory system having plane of symmetry are classified into the in-plane and out-of-plane modes. From the viewpoint of screw theory, they represent respectively the vibration axes perpendicular to the plane of symmetry and lying in the plane of symmetry. In this paper, the sets of orthogonal and mutually intersecting three springs are used as resilient support of a rigid body. The geometrical conditions for the system to have a plane of symmetry and diagonalized stiffness matrix are presented. From the orthogonality of the vibration modes with respect to the inertia matrix, the geometrical relation between the reaction wrenches and the vibration modes are derived. This geometrical relation is then used to get the cubic design equation for the design of out-of-plane modes. The numerical design example of engine mounts is presented in order to explain the suggested design technique.

Numerical Techniques in Calculation of Hydrodynamic Stability for Vertical Natural Convection Flows (수직(垂直) 자연대류(自然對流)의 수동력학적(水動力學的) 안정성(安定性) 계산에 관한 수치해석(數値解析) 방법(方法))

  • Hwang, Young-Kyu
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.82-94
    • /
    • 1988
  • The hydrodynamic stability equations for natural convection flows adjacent to a vertical isothermal surface in cold or warm water (Boussinesq or non-Boussinesq situation for density relation), constitute a two-point-boundary-value (eigenvalue) problem, which was solved numerically using the simple shooting and the orthogonal collocation method. This is the first instance in which these stability equations have been solved using a computer code COLSYS, that is based on the orthogonal collocation method, designed to solve accurately two-point-boundary-value problem. Use of the orthogonal collocation method significantly reduces the error propagation which occurs in solving the initial value problem and avoids the inaccuracy of superposition of asymptotic solutions using the conventional technique of simple shooting.

  • PDF

A Novel Phase Locked Loop for Grid-Connected Converters under Non-Ideal Grid Conditions

  • Yang, Long-Yue;Wang, Chong-Lin;Liu, Jian-Hua;Jia, Chen-Xi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • Grid synchronization is one of the key techniques for the grid-connected power converters used in distributed power generation systems. In order to achieve fast and accurate grid synchronization, a new phase locked loop (PLL) is proposed on the basis of the complex filter matrixes (CFM) orthogonal signal generator (OSG) crossing-decoupling method. By combining first-order complex filters with relation matrixes of positive and negative sequence voltage components, the OSG is designed to extract specific frequency orthogonal signals. Then, the OSG mathematical model is built in the frequency-domain and time-domain to analyze the spectral characteristics. Moreover, a crossing-decoupling method is suggested to decouple the fundamental voltage. From the eigenvalue analysis point of view, the stability and dynamic performance of the new PLL method is evaluated. Meanwhile, the digital implementation method is also provided. Finally, the effectiveness of the proposed method is verified by experiments under unbalanced and distorted grid voltage conditions.

Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography (순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정)

  • Kim, Myung-Jae;Jung, Hyun-Gi;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.

A Continuous Wavelet Study on Approach Wind and Building Pressure (접근풍속과 건물 변동풍압력에 대한 연속파동변화법의 적용)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.89-97
    • /
    • 2005
  • Application of proper orthogonal decomposition (POD) and continuous wavelet transform (CWT) is introduced to study wind speed and building roof pressures of flow separation region. In this study, a detailed analysis of the approach wind flow, wind-induced building pressure and the relation between the two fields was carried out using the POD technique and CWT analysis. The results show potential of the application of POD and CWT in characterization of spatio-temporal and spectral properties of the approach wind and its induced dynamic pressure events. Some of findings resulting from the application of this analysis can be summarized as follows: (1) The POD first principal coordinate of the roof pressure in the separated shear layer is closely correlated with the longitudinal component of oncoming flow. (2) The CWT analysis suggests that the extreme peak pressure in the separated shear layer is due to condensed large-scale eddy motions.

  • PDF

GENERALIZED Δ-COHERENT PAIRS

  • Kwon, K.H.;Lee, J.H.;F. Marcellan
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.977-994
    • /
    • 2004
  • A pair of quasi-definite linear functionals {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair if monic orthogonal polynomials (equation omitted) relative to u$_{0}$ and u$_1$, respectively, satisfy a relation (equation omitted) where $\sigma$$_{n}$ and T$_{n}$ are arbitrary constants and $\Delta$p = p($\chi$+1) - p($\chi$) is the difference operator. We show that if {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair, then u$_{0}$ and u$_{1}$ must be discrete-semiclassical linear functionals. We also find conditions under which either u$_{0}$ or u$_1$ is discrete-classical.ete-classical.

A study on residual stress distribution in surface grinding (평면연삭에서의 잔류응력 분포에 관한 연구)

  • 김경년;정재천;김기선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.109-118
    • /
    • 1991
  • In this study, it is intended to investigate the effect of the grinding conditions such as table feed, down feed, cross feed of residual stress distribution. And this distribution is investigated upon the grinding direction and the its orthogonal direction at ground layers. The material is used carbon steel (SM20C) which usually used to motor axis. And in order to be considered as Bernoulli-Euler beam, the dimension of the specimen is appropriately designed. According as corroiding the ground surface, the residual stress layers are removed and strain which occured on account of unbalance of internal stress is detected by rosette-gate. Through A/D converter and computer, these values are saved and evaluated residual stress by stress-strain relation formula. Finally, these results are diagrammatized with Auto Cad. The results obtained are as follows. As the depth from the ground surface increases in grinding direction and its orthogonal direction, tensile residual stress exists in the surface, and subsequently it becomes compressive residual stress as it goes downward. As the table feed, the cross feed and the down feed increase, maximum residual stress is transformed form the tensile to the compressive.

  • PDF