DOI QR코드

DOI QR Code

FINITE ORTHOGONAL POLYNOMIALS SATISFYING A SECOND ORDER DIFFERENTIAL EQUATION

  • Yoo, Byeong-Hoon (Department of Mathematics Education Andong National University) ;
  • Lee, Dong-Won (Department of Mathematics Education Teachers College Kyungpook National University)
  • Published : 2005.10.01

Abstract

The orthogonality of polynomials plays an important role in many areas and in many cases only finite orthogonalities are used. Concerning this fact we find characterizations of a finite orthogonal polynomial system satisfying a second order differential equation and then give several examples.

Keywords

References

  1. S. Bochner, Uber Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736 https://doi.org/10.1007/BF01180560
  2. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1977
  3. J. Farvard, Sur les polynomes de Tchebicheff, C. R. Acad. Paris. 200 (1935), 2052-2053
  4. R. Koekoek and H. G. Meijer, A generalization of Laguerre polynomials, SIAM J. Math. Anal. 24 (1993), no. 3, 768-782 https://doi.org/10.1137/0524047
  5. K. H. Kwon, J. K. Lee, and B. H. Yoo, Characterizations of classical orthogonal polynomials, Results Math. 24 (1993), 119-128 https://doi.org/10.1007/BF03322321
  6. K. H. K Won and L. L. Littlejohn, The orthogonality of the Laguerre polynomials {$L^{(-k)}_{n}(x)$} for positive integers k, Ann. Numer. Math. 2 (1995), 289-303
  7. K. H. K Won and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973-1008
  8. K. H. K Won and L. L. Littlejohn, Sobolev orthogonal polynomials and second-order differential equations, Rocky Mountain J. Math. 28 (1998), 547-594 https://doi.org/10.1216/rmjm/1181071786
  9. E. N. Laguerre, Sur l'integral $\int_{x}^{\infty}x^{-1}e^{-x}dx$, Bull. de la societe Math. de France 7 (1879), 72-81
  10. R. D. Morton and A. M. Krall, Distributional weight functions for orthogonal polynomials, SIAM J. Math. Anal. 9 (1978), no. 4, 604-626 https://doi.org/10.1137/0509042
  11. N. J. Sonine, Recherches sur les fonctions Cylindriques et le deueloppmeni des fonctions continues en Series, Math. Ann. 16 (1880), 1-80 https://doi.org/10.1007/BF01459227
  12. G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquim Publications, New York, 1959

Cited by

  1. Characterizations of distributional weights for weak orthogonal polynomials satisfying a second-order differential equation vol.194, pp.5, 2015, https://doi.org/10.1007/s10231-014-0422-6