References
- S. Bochner, Uber Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736 https://doi.org/10.1007/BF01180560
- T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1977
- J. Farvard, Sur les polynomes de Tchebicheff, C. R. Acad. Paris. 200 (1935), 2052-2053
- R. Koekoek and H. G. Meijer, A generalization of Laguerre polynomials, SIAM J. Math. Anal. 24 (1993), no. 3, 768-782 https://doi.org/10.1137/0524047
- K. H. Kwon, J. K. Lee, and B. H. Yoo, Characterizations of classical orthogonal polynomials, Results Math. 24 (1993), 119-128 https://doi.org/10.1007/BF03322321
-
K. H. K Won and L. L. Littlejohn, The orthogonality of the Laguerre polynomials {
$L^{(-k)}_{n}(x)$ } for positive integers k, Ann. Numer. Math. 2 (1995), 289-303 - K. H. K Won and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973-1008
- K. H. K Won and L. L. Littlejohn, Sobolev orthogonal polynomials and second-order differential equations, Rocky Mountain J. Math. 28 (1998), 547-594 https://doi.org/10.1216/rmjm/1181071786
-
E. N. Laguerre, Sur l'integral
$\int_{x}^{\infty}x^{-1}e^{-x}dx$ , Bull. de la societe Math. de France 7 (1879), 72-81 - R. D. Morton and A. M. Krall, Distributional weight functions for orthogonal polynomials, SIAM J. Math. Anal. 9 (1978), no. 4, 604-626 https://doi.org/10.1137/0509042
- N. J. Sonine, Recherches sur les fonctions Cylindriques et le deueloppmeni des fonctions continues en Series, Math. Ann. 16 (1880), 1-80 https://doi.org/10.1007/BF01459227
- G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquim Publications, New York, 1959
Cited by
- Characterizations of distributional weights for weak orthogonal polynomials satisfying a second-order differential equation vol.194, pp.5, 2015, https://doi.org/10.1007/s10231-014-0422-6