• Title/Summary/Keyword: Optimization constraints

Search Result 1,554, Processing Time 0.025 seconds

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

A Study on Optimization of Structure with Limit State Constraints (한계상태를 고려한 구조물의 최적화에 관한 연구)

  • Kim, Kee-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.181-186
    • /
    • 2004
  • This study presents a optimization of structure, in which constraints contain the conditions of stress and serviceability, while the sequential linear programming method (SLP) is used as a rational approach. The optimum design results contained on the limit state constraints are compared with those obtained by the only stress and ministry of construction enacted standard plans. A simple slab bridge is analysed numerically for illustration of the structural optimization. It may be asserted that serviceability constraints is very important to a structure design.

  • PDF

Truss Size Optimization with Frequency Constraints using ACO Algorithm (개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.

Reliability-Based Design Optimization of Slider Air Bearings

  • Yoon, Sang-Joon;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1722-1729
    • /
    • 2004
  • This paper presents a design methodology for determining configurations of slider air bearings considering the randomness of the air-bearing surface (ABS) geometry by using the iSIGHT. A reliability-based design optimization (RBDO) problem is formulated to minimize the variations in the mean values of the flying heights from a target value while satisfying the desired probabilistic constraints keeping the pitch and roll angles within a suitable range. The reliability analysis is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the reliability constraints affected by the random variables. Reliability constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with minimum increase in the objective. The simulation results of the RBDO are listed in comparison with the values of the initial design and the results of the deterministic optimization, respectively. To show the effectiveness of the proposed approach, the reliability analyses are simply carried out by using the mean value first-order second-moment (MVFO) method. The Monte Carlo simulation of the RBDO's results is also performed to estimate the efficiency of the proposed approach. Those results are demonstrated to satisfy all the desired probabilistic constraints, where the target reliability level for constraints is defined as 0.8.

Fuzzy-Enforced Complementarity Constraints in Nonlinear Interior Point Method-Based Optimization

  • Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • This paper presents a fuzzy set method to enforce complementarity constraints (CCs) in a nonlinear interior point method (NIPM)-based optimization. NIPM is a Newton-type approach to nonlinear programming problems, but it adopts log-barrier functions to deal with the obstacle of managing inequality constraints. The fuzzy-enforcement method has been implemented for CCs, which can be incorporated in optimization problems for real-world applications. In this paper, numerical simulations that apply this method to power system optimal power flow problems are included.

A Study on the Optimization of Drilling Operations(1): Optimization of Machining Variables for Drilling Operations (드릴가공 최적화에 대한 연구(1): 드릴가공시 가공변수의 최적화)

  • Rou, Hoi-Jin
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.337-345
    • /
    • 1999
  • This paper presents the optimization of a drilling operation subject to machining constraints such as power, torque, thrust, speed and feed rate. The optimization is meant to minimize the machining time required to produce a hole. For the first time, the effects of a pilot hole are included in the formulation of the machining constraints. The optimization problem is solved by using the geometric programming technique. The dual problem is simplified based on the characteristics of the problem, and the effects of machining constraints on the machining variables are identified.

  • PDF

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

Shape Optimization of Magnetic Systems with state variable Constraints (상태변수 구속조건을 갖는 자장시스템의 형상최적화)

  • Kim, Chang-Wook;Choi, Myung-Jun;Lee, Se-Hee;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.143-145
    • /
    • 1998
  • This paper presents the shape optimization algorithm of magnetic systems with, state variable constraints using the Finite Element Method. In the design' of electromagnetic systems, sometimes we have to consider the state variables when they seriously affect the performance of electromagnetic systems. So we should define that some design problems have the constraints of the state variables. We use the gradient of constraints and sensitivity analysis in order to consider the state variable constraints and obtain an optimal shape. The optimal shape must be satisfied constraints, so we take the gradient projection method as a kind of optimization methods. In this paper a numerical example with state variable constraints uses the superconducting electromagnet that has another constraint which the volume of the superconductor should be constant.

  • PDF

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.