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Abstract

This paper presents a fuzzy set method to enforce complementarity constraints (CCs) in a
nonlinear interior point method (NIPM)-based optimization. NIPM is a Newton-type approach
to nonlinear programming problems, but it adopts log-barrier functions to deal with the obstacle
of managing inequality constraints. The fuzzy-enforcement method has been implemented
for CCs, which can be incorporated in optimization problems for real-world applications. In
this paper, numerical simulations that apply this method to power system optimal power flow
problems are included.
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1. Introduction

In real-world application, several practical situations can be modeled using nonlinear opti-
mization problems with system equilibrium constraints, including complementarity conditions
[1-3]. In optimization problems, complementarity constraints (CCs) are used to explain the
disjunctive condition of system models [4]; that is, depending on a given environment, dif-
ferent rules are imposed for systems with these constraints. They can be found in mechanics,
circuits with electronic switching devices, structural studies, and power market models in the
electricity industry [1, 2, 5].

In the past decades, many research activities on the application of interior point methods
(IPMs) to nonlinear programming, one of the diverse engineering problems, have been con-
ducted [6-10]. IPM adopts the log-barrier penalty functions to adequately cope with inequality
constraints; it was first proposed by Frish [11]. The IPM presented by Karmarkar [12] was
designed for linear programming problems, and it was considered to be approximately 50
times faster than the common simplex method. Later, IPMs were devised [6, 7, 13, 14],
which can find solutions to primal and dual variables. The current paper mainly discusses
the methods for dealing with complementarity conditions in primal and dual nonlinear IPMs
(NIPMs).

The standard complementarity problems find solutions to the following conditions:

x ≥ 0, F (x) ≥ 0, 〈F (x),x〉 = 0 (1)

where the operator of the last condition in (1) denotes the inner products. In [15], a method of
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formulating generalized complementarity problems with an un-
constrained optimization problem was discussed. From the
result, an optimization problem with complementarity condi-
tions was envisaged to be reformulated into a multi-objective
optimization problem. For practical NIPM applications, a set of
reduced correction equations is usually adopted, including the
Hessian term and the Jacobian sub-matrix, only for the equality
constraints [16, 17]. Thus, if the equality formulation of (1) is
added to the NIPM formulation, the system size of the correc-
tion equations must be increased; hence, a certain amount of
effort is required for modification of the CC.

The present paper presents a method of fuzzy-enforcing CC
as a form of inequality for NIPM-based optimization methods.
Fuzzy enforcement was originally proposed in [18], but it was
designed for general equality and inequality constraints in suc-
cessive linear programming algorithms. By introducing fuzzy
enforcement, the method proposed in this paper can adequately
deal with the concept of “not too much” violation of the comple-
mentarity conditions, providing enough room for the solutions
to approach optimality. This paper also presents the numerical
results when the method was applied to an NIPM-based opti-
mal power flow (OPF) with CCs in the generator voltage and
reactive power generation.

2. Fuzzy Enforcement of CCs

2.1 Problem Formulation

The formulation of nonlinear programming problems in this
study with the CC of interest can be briefly expressed as follows:

min f(x)

s.t. g(x) = 0

hmin ≤ h(x) ≤ hmax

(ci(xi)−αi) (xi−βi) = 0

ci(xi)−αi ≥ 0, xi−βi ≥ 0,

i = 1, ..., kc

(2)

where x is the vector that includes the control and dependent
variables. In (2), f (?) is the objective function; g(?) and h(?) are
the function vectors for the equality and inequality constraints,
respectively; and hmin and hmax denote the lower and upper
limits of h(?), respectively. xi stands for the ith variable of x
involved in the CC; c(xi)-αi and xi-βi are the functions for the
complementarity conditions, and they are non-negative; and kc
is the number of CCs in the problem.

On the basis of the condition where the CC factors are non-

εi cci (xi)

μi (cci (xi))

Figure 1. Membership function for the inequality form of a CC.

negative, the equivalent inequality constraint can be expressed
as follows:

(ci(xi)−αi) (xi−βi) ≤ 0 (3)

When NIPM is applied to the optimization problem using this
inequality form of the CC, using the same dimensional correc-
tion equations as those of the nonlinear optimization problem is
possible without the equality form of the CC. However, NIPM
employs the log-barrier functions to force the solution in the
whole procedure within the feasible region; hence, the solution
cannot move from the initial vector of x to find better solutions
in terms of optimality and feasibility. Thus, a facilitating tech-
nique to provide enough room for moving the solutions might
be needed, which takes into consideration the CC condition.

2.2 Fuzzy Enforcement of the CCs

We let the ith CC function in (3) be cci(xi). The fuzzy set
theory [19] can be applied to the CC because during the NIPM
solution process, the “not too much” violation of a CC might
be acceptable. From the fuzzy relation, the inequality form of
the CC can be written as

cci(xi)≤̃0 (4)

Each fuzzy relation in the fuzzy set theory is associated with
a membership function that represents the degree of certainty.
The membership function in (4) can be expressed as follows
(Figure 1):

µi (cc(xi)) =


1, cci(xi) ≤ 0

(εi − cci(xi)) /εi, 0 ≤ cci(xi) ≤ εi
0, cci(xi) > εi

(5)
where εi stands for the acceptable limit of violating the ith CC
during the solution process.

To apply the fuzzy-enforced CC to the optimization problem,
the degree of satisfaction in the NIPM solution process should
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be enhanced. For this purpose, the optimization problem can
be rewritten with a multi-objective function as follows:

min f(x)− acc
∑

i zi

s.t. g(x) = 0

hmin ≤ h(x) ≤ hmax

zi ≤ µi (cci(xi))

i = 1, ..., kc

(6)

where acc is the weighting factor for the term that maximizes
zi, which is the lower limit of the membership function of the
ith CC. In (6), h(·) is the function vector for the inequality
constraints, including the non-negativity condition of the CC
factors, and hmin and hmax denote the lower and upper limit
vectors of h(·), respectively.

The second term of the objective function in (6) forces each
zi to the reachable maximum value of its membership function,
and zi is the lower limit of the membership function. From (6),
we can notice that the selection of acc is quite important. Similar
to the membership function, the maximum value of zi is one. If
the slope of the original objective function f (x) is much higher
than acc, then zi approaches one, and hence, the infeasibility of
the CCs might not be acceptable. Thus, keeping acc around the
maximum value of f (x) during the solution process would be
better.

2.3 Application of NIPM

To solve the nonlinear optimization problem in (6), this study
adopts the NIPM [7, 17] using the fuzzy-enforced CCs. NIPM
is a Newton-type approach to nonlinear programming problems,
but the introduction of log-barrier functions for the inequal-
ity constraints facilitates the dealing of these constraints. In
addition, a step size of each solution process is selected to
force the solution within the feasible region; thus, deciding the
set of active inequality constraints, which is usually needed in
Newton-type approaches, becomes unnecessary.

As mentioned in subsection 2.1, the two CC factors are non-
negative. Therefore, the lower limit of cci(xi) is zero. In addi-
tion, we assume that the maximum cci(xi) is εi. On the basis
of this assumption, only the middle section of the membership
function is needed, and the inequality function of the ith CC
can be expressed as follows:

0 ≤ cci(xi) + εizi ≤ εi (7)

When zi is zero, cci(xi) varies in the range [0, εi]; when zi

is one, cci(xi) should be zero. When the NIPM is applied,
the solution in the middle of the process should be within the
feasible region; thus, using (7) is adequate for the CC inequality
constraints.

For the NIPM application, the problem formulation can be
modified as follows:

min f(x)− accZe
s.t. g(x) = 0

h(x)− sL − hmin = 0

h(x) + sU − hmax = 0

cc(x) + ZEe− sCL = 0

cc(x) + ZEe+ sCU − Ee = 0

sL, sU , sCL, sCU ≥ 0

(8)

where Z and E are diagonal matrices whose (i, i) components
are zi and εi, respectively. In (8), sL and sU are the vectors
with slack variables for the upper and lower constraints of h(?),
respectively; sCL and sCL are the vectors with slack variables
for the upper and lower constraints of the CCs, respectively;
cc(x) is the function vector, including the entire CCs; and e is a
vector whose component values are all one. The slack variables
convert the inequality constraints into equality constraints.

When the log-barrier functions are considered for the remain-
ing inequality constraints of the slack variables, the Lagrange
function can be constructed as follows:

L(x, z, sL, sU, sCL, sCU ;λ, πL, πU , πCL, πCU )

= f(x)− accZe− λT g(x)

− πT
L (h(x)− sL − hmin)

− πT
U (h(x) + sU − hmax)

− πT
CL (cc(x) + ZEe− sCL)

− πT
CU (cc(x) + ZEe+ sCU − Ee)

− µp(sL, sU, sCL, sCU )

p(sL, sU, sCL, sCU )

≡
∑
i

ln(sLi) +
∑
i

ln(sUi)

+
∑
k

ln(sCLk) +
∑
k

ln(sCUk)

(9)

where λ is the Lagrangian multipliers for the equality con-
straints and g(.) = 0. In (6), πL and πU are the Lagrangian mul-
tipliers of the lower and upper limits of h(.), respectively; πCL

and πCU are the lower and upper limits of the fuzzy-enforced
CCs, respectively; p(.) is the summation of the log-barrier func-
tions, which keeps the solution within the feasible region; and
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µ is a barrier parameter.

2.4 Implementation of fuzzy enforcement of CCs on OPFs

In this study, the fuzzy enforcement of a CC was applied to
the problem of generator voltage and reactive power generation
in the formulation of the OPF. The CC in the OPF formulation
can be expressed as follows:

(Qi,max −Qi)(Vi,ref − Vi) = 0 (10)

(Qi −Qi,min)(Vi − Vi,ref ) = 0 (11)

where Qi,max and Qi,min denote the upper and lower limits of
the reactive power generation at bus i, Qi, respectively. In (10)
and (11), Vi and Vi,ref are the generator terminal voltage and
its reference value at bus i, respectively.

The OPF formulation must satisfy only (10) or (11), that is,
when the CC in (10) is taken into account, that of (11) should
not be included in the formulation. Even though the above CC
must be considered, the conventional OPF does not include the
CC for the generator voltage and the reactive power generation.
In this study, fuzzy enforcement is adopted for the CC in (10)
and (11), and the NIPM process decides which CC is to be
incorporated into the formulation.

3. Numerical Examples

This section presents an illustrative example using an island
power system. The system includes nine in-service generating
units, three wind turbine generators, battery energy storage
systems (BESSs), and two high voltage direct current (HVDC)
interties from external electric network systems to support the
electricity consumption level of the system. In the simulation,
we assume that the active and reactive power injections from the
HVDC interties are fixed. Further, the wind turbine generators
are considered as conventional generators with reactive power
capability. The voltage stability issues of the Jeju system were
described in [20].

In the present study, the fuzzy-enforced CCs for the generator
voltages and reactive power generation are implemented on
a modified version of the NIPM-based OPF in [17]. In the
simulation, the objective function of the OPF is to minimize
the total loss in the transmission lines. In the commonly used
OPFs, the control vectors are the desired voltage magnitudes
of the generators. However, the target of the OPF proposed
in this paper is to determine the reactive power output of the

Figure 2. Change in complementary gap during the solution process.

Figure 3. Change in maximum mismatch during the solution process.

BESS without any changes in the generator terminal voltages.
The current control settings of the generator voltages can be
maintained by considering their CCs, as expressed in (9) and
(10). To reduce the transmission loss, only the reactive power
output of the BESS in the power system is allowed to move as
control vectors.

For the island power system, the NIPM-based OPF with the
fuzzy-enforced CC for the generators was performed. The pro-
cess took 16 iterations until the solution satisfied the stopping
criteria. The maximum allowable mismatch for the equality
constraints was 102, and the tolerance of the complementary
gap for the primal and dual variables in the simulation was
10−3. Figures 2 and 3 show the change in the complementary
gap and the maximum mismatch of the network constraints,
respectively.

Figure 2 shows that the complementary gap is gradually re-
duced until it becomes less than the tolerance. The centering
parameter [16] of the NIPM is set to 0.1, and hence, we can ex-
pect the complementary gap to reduce by 90%. Figure 3 shows
that in the initial part of the solution process, the maximum
mismatch is dramatically reduced below the solution tolerance,
but in further iteration, the maximum mismatch increases to
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Table 1. QV output of the generators at the final solution

Bus# Q[pu] V[pu] Vref [pu] Qmax[pu] Qmin[pu] CC error

5 0.048584 1.024289 1.025 0.05 -0.25 1.00666E-06

55 0.029888 1.030468 1.025 0.04 -0.24 0.001475749

555 -0.01021 1.025782 1.025 0.0075 -0.025 1.15683E-05

20121 -0.05866 1.006287 1 0.35 -0.1 0.000259928

20122 -0.07507 1.006723 1 0.35 -0.1 0.000167573

20124 0.120517 1.007318 1 0.363 -0.25 0.002711446

20126 -0.03289 1.004337 1 0.048 -0.1 0.000291063

20127 -0.03192 1.004232 1 0.048 -0.1 0.000288117

20173 -0.02802 1.002534 1 0.5 -0.12 0.00023308

20174 0.097852 1.005073 1 0.363 -0.12 0.001105161

22140 -0.05482 1.005461 1 0.5 -0.1 0.000246719

22190 -0.02301 1.004091 1 0.5 -0.1 0.000314985

some extent and then decreases below the tolerance. This phe-
nomenon might have stemmed from the application of the CCs
for the voltage–reactive power relationship. The same situation
applies to the change in the active power loss up to the 12th
iteration. When the final solution is obtained, the transmission
loss is 2.4429 [MW]. Figure 4 shows the change in the active
power loss during the solution iteration.

Table 1 shows the reactive power and voltage magnitudes
of each generator at the final solution and the corresponding
CC values. The CC of the generator at bus 5 is related to the
maximum reactive power limit, as expressed in (10), and those
of the other generators are related to the minimum reactive
power limit, as expressed in (11). At the final solution, the CC
errors of the generators are different, and the total CC error
is approximately 0.007106 [pu], as shown in the last column
in Table 1. This CC error appears to be acceptable from the
engineering point of view.

4. Conclusion

This paper has presented a fuzzy set method for enforcing
CC in an NIPM-based optimization. NIPM is a Newton-type
approach to nonlinear programming problems, but it adopts
the log-barrier functions to deal with the obstacle of manag-
ing inequality constraints. The fuzzy-enforcement method has
been implemented for CCs, which can be incorporated in op-
timization problems for real-world applications. In this paper,

Figure 4. Change in the active power loss during the solution process.

numerical simulations that apply the method to power system
OPF problems have been included.
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