References
- Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge: Cambridge University Press, 1996.
- F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, New York: Springer-Verlag, 2003.
- A. F. Izmailov, "Mathematical programs with complementarity constraints: regularity, optimality conditions, and sensitivity," Computational Mathematics and Mathematical Physics, vol. 44, no. 7. pp. 1145-1164, 2004.
- M. C. Ferris and J. S. Pang, "Engineering and economic applications of complementarity problems," SIAM Review, vol. 39, no. 4, pp. 669-713, 1997. https://doi.org/10.1137/S0036144595285963
- W. Rosehart, C. Roman, and A. Schellenberg, "Optimal power flow with complementarity constraints," IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 813- 822, May 2005. http://dx.doi.org/10.1109/TPWRS.2005. 846171
- S. J. Wright, Primal-Dual Interior Point Methods, Philadelphia: SIAM, 1997.
- S. Mehrotra, "On the implementation of a primal-dual interior point method," SIAM Journal on Optimization, vol. 2, no. 4, pp. 575-601, 1992. http://dx.doi.org/10.1137/ 0802028
- Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, Philadelphia: SIAM, 1994.
- S. G. Nash and A. Sofer, "On the complexity of a practical interior-point method," SIAM Journal on Optimization, vol. 8, no. 3, pp. 833-849, 1998. http://dx.doi.org/10.1137/ S1052623496306620
- A. Forsgren, P. E. Gill, and M. H. Wright, "Interior methods for nonlinear optimization," SIAM Review, vol. 44, no. 4, pp. 525-597, 2002. https://doi.org/10.1137/S0036144502414942
- K. R. Frisch, The Logarithmic Potential Method Of Convex Programming, Oslo: University Institute of Economics, 1955.
- N. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica, vol. 4, no. 4, pp. 373-395, 1984. http://dx.doi.org/10.1007/BF02579150
- N. Megiddo, Pathways to the Optimal Set in Linear Programming, San Jose: Technical Report of IBM Almaden Research Center, 1986.
- R. D. C. Monteiro and I. Adler, "Interior path following primal-dual algorithms. Part II: convex quadratic programming," Mathematical Programming, vol. 44, no. 1, pp. 43-66, May 1989. http://dx.doi.org/10.1007/bf01587076
- J. M. Peng and Y. X. Yuan, "Unconstrained method for generalized complementarity problems," Journal of Computational Mathematics, vol. 15, pp. 253-264, 1997.
- H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama, "An interior point nonlinear programming for optimal power flow problems with a novel data structure," IEEE Transactions on Power Systems, vol. 13, no. 3, pp. 870-877, Aug. 1998. http://dx.doi.org/10.1109/59.708745
- H. Song, B. Lee, S. H. Kwon, and V. Ajjarapu, "Reactive reserve-based contingency constrained optimal power flow (RCCOPF) for enhancement of voltage stability margins," IEEE T Transactions on Power Systems, vol. 18, no. 4, pp. 1538-1546, Nov. 2003. http://dx.doi.org/10.1109/TPWRS. 2003.818759
- W. H. E. Liu and X. Guan, "Fuzzy constraint enforcement and control action curtailment in an optimal power flow," IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 639-644, May 1996. http://dx.doi.org/10.1109/59.496133
- H. J. Zimmerman, Fuzzy Set Theory and Its Application, 2nd ed., Boston: Kluwer Academic Publishers, 1991.
- H. Song, R. Dosano, and B. Lee, "Power system voltage stability classification using interior point method based support vector machine (IPMSVM)," International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 3, pp. 238-243, Sep. 2009. https://doi.org/10.5391/IJFIS.2009.9.3.238
Cited by
- Determining Countermeasures against Fault Currents Using a Decomposition Method Based on Fuzzy Fault Level Constrained Optimal Power Flow vol.9, pp.2, 2019, https://doi.org/10.3390/app9020274