• Title/Summary/Keyword: Optimality condition

Search Result 78, Processing Time 0.025 seconds

PROXIMAL AUGMENTED LAGRANGIAN AND APPROXIMATE OPTIMAL SOLUTIONS IN NONLINEAR PROGRAMMING

  • Chen, Zhe;Huang, Hai Qiao;Zhao, Ke Quan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.149-159
    • /
    • 2009
  • In this paper, we introduce some approximate optimal solutions and an augmented Lagrangian function in nonlinear programming, establish dual function and dual problem based on the augmented Lagrangian function, discuss the relationship between the approximate optimal solutions of augmented Lagrangian problem and that of primal problem, obtain approximate KKT necessary optimality condition of the augmented Lagrangian problem, prove that the approximate stationary points of augmented Lagrangian problem converge to that of the original problem. Our results improve and generalize some known results.

  • PDF

Rayleigh-Ritz optimal design of orthotropic plates for buckling

  • Levy, Robert
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.541-552
    • /
    • 1996
  • This paper is concerned with the structural optimization problem of maximizing the compressive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condition is first derived via variational calculus. It states that the thickness distribution is proportional to the strain energy density contrary to popular claims of constant strain energy density at the optimum. An engineers physical meaning of the optimality condition would be to make the average strain energy density with respect to the depth a constant. A double cosine thickness varying plate and a double sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in capacity for an orthotropic plate having 100% of its fibers in $0^{\circ}$ direction.

Large Eddy Simulation of Turbulent Flow in an Optimal Diffuser (큰에디모사법을 이용한 최적 디퓨져내의 난류유동 해석)

  • Lim Seokhyun;Caoi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.811-814
    • /
    • 2002
  • Using a mathematical theory, we show that the optimality condition of a turbulent diffuser with maximum pressure recovery at the exit is zero shear stress along the wall. The optimal diffuser shape is designed through iterative procedures by using the $k-{\varepsilon}-{\nu}^{2}-f$ turbulence model for flow simulation. The Reynolds number based on the bulk mean velocity and the channel height at the diffuser entrance is 18,000. We also perform large eddy simulation to validate the shape design results and investigate the flow characteristics near the zero-skin friction wall. Results from large eddy simulation show that the skin friction is slightly higher than zero but is still very small as compared to that of the flat plate boundary layer flow Although the time-averaged wall shear stress is slightly above zero along the diffuser wall, instantaneous flow reversals occur intermittently. The streamwise mein velocity shows an asymptotic behavior of the half-power-law near the wall where the skin friction is close to zero.

  • PDF

Optimal Design of Electric Vehicle Cross Beam for Adaptive Design of Homogenized Structure (균질화된 구조의 적응설계를 위한 전동차 크로스 빔의 최적설계)

  • 백석흠;이경영;조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.85-93
    • /
    • 2004
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. This need to use adaptive design in initial design stage to gain economy through interchangeability between many kinds of components. This study performs the topology optimization by the concept of homogenization based on optimality criteria method which is efficient for the problem with a number of boundary condition and design variable. Therefore this provides the method to determine the optimum position and the shape of circular hole in the cross beam and then can achieve the weight minimization of electric vehicle body.

A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole (원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구)

  • 전형용;천홍정;송시엽;최중호
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.876-883
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam fur electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

  • PDF

Optimal Designs of Partially Accelerated Life Tests for Weibull Distributions (와이블 분포에서 부분가속수명시험의 최적설계)

  • Chung, Sang-Wook;Bai, Do-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 1998
  • This paper considers two modes of partially accelerated life tests for items having Weibull lifetime distributions. In a use-to-acclerated mode each item is first run at use condition and, if it does not fail for a specified time, then it is run at accelerated condition until a predetermined censoring time. In an accelerated-to-use mode each one is first run at accelerated condition and, if it does not fail for a specified time, then it is run at use condition. Maximum likelihood estimators of the parameters of the lifetime distribution at use condition, and the 'acceleration factor' are obtained. The stress change time for each mode is determined to minimize the asymptotic variance of the acceleration factor, and the two modes are compared. For selected values of the design parameters the optimum plans are obtained, and the effects of the incorrect pre-estimates of the design parameters are investigated. Minimizing the generalized asymptotic variance of the estimators of the model parameters is also considered as an optimality criterion.

  • PDF

Development of DCOC Algorithm Considering the Variation of Effective Depth in the Optimum Design of PRC Continuous Beam (PRC연속보 최적설계에서 단면의 유효깊이 변화를 고려한 DCOC알고리즘 개발)

  • 조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.281-291
    • /
    • 2002
  • This paper describes the minimum cost design of prestressed reinforced concrete (PRC) hem with rectangular section. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non prestressing steel, and formwork is minimized. The design constraints include limits on the minimum deflection, flexural and shear strengths, in addition to ductility requirements, and upper-Lower bounds on design variables as stipulated by the specification. The optimization is carried out using the methods based on discretized continuum-type optimality criteria(DCOC). Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables - effective depth, eccentricity of prestressing steel and non prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. In this paper the effective depth is considered to be freely-varying and one uniform for the entire multispan beam respectively. Also the maximum eccentricity of prestressing force is considered in every span. In order to show the applicability and efficiency of the derived algorithm, several numerical examples of PRC continuous beams are solved.

Hybrid Divisible Load Theory

  • Kim H. J.;Kim Ki Seb;Choi Yong Soo;Lee Dal Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.524-527
    • /
    • 2004
  • New concept of hybrid divisible load theory is introduced in this paper. Hybrid system deals with a combination of modularly divisible load and arbitrarily divisible load. Main idea of hybrid divisible load theory is introduced with a simple example. A condition of optimality is derived for the hybrid case.

  • PDF

A Study on the Surrogate Duality Theory (Surrogate 쌍대이론에 관한 연구)

  • 오세호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.45-50
    • /
    • 1986
  • 본 연구에서 고찰한 surrogate relaxation은 Lagrangian relaxation 방법과는 달리 제약식들을 선형조합으로 묶어 문제를 푼다. 수리계획 분계가 convexity를 만족하지 못하는 경우에는 Lagrangian의 경우와 마찬가지로 surrogate gap이 발생한다. Lagrangian 쌍대이론을 토대로 surrogate optimality condition을 알아보고 수리계획법의 특별 형태인 정수선형계획법에 적용해 보았다. 일반적으로 surrogate gap은 Lagrangian gap 보다 작기 때문에 좀더 근사하게 원 문제의 최적 목적 함수값에 접근할 수 있다. 따라서 branch and bound 알고리즘을 개발할 때 중요한 정보를 제공하는 것이다.

  • PDF

IDENTIFICATION OF CONSTANT PARAMETERS IN PERTURBED SINE-GORDON EQUATIONS

  • Ha, Jun-Hong;Nakagiri, Shin-Ichi
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.931-950
    • /
    • 2006
  • We study the identification problems of constant parameters appearing in the perturbed sine-Gordon equation with the Neumann boundary condition. The existence of optimal parameters is proved, and necessary conditions are established for several types of observations by utilizing quadratic optimal control theory due to Lions [13].