• Title/Summary/Keyword: Optimal Test Plan

Search Result 86, Processing Time 0.026 seconds

The Study on the Failure Rate Sampling Plan Considering Cost (비용을 고려한 신뢰성 샘플링검사 설계에 관한 연구)

  • 조재립
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.97-103
    • /
    • 2000
  • This study considers the design of life test sampling inspection plans by attributes for failure rate level qualification at selected confidence level. The lifetime distribution of products is assumed to be exponential. MIL-STD-690C and KS C 6032 standards provide this procedures. But these procedures have some questions to apply in the field. The cost of test and confidence level($1-{\beta}$ risk) are the problem between supplier and user. So, we suggest that the optimal life test sampling inspection plans using expected cost model considering product cost, capability, environmental test cost, etc.

  • PDF

The Optimal Design for Vehicle Door Trim Armrest Regard to Side Impact Test (측면충돌을 고려한 자동차 도어트림 팔걸이부 최적 설계)

  • Choi, Hae-Seok;Jang, Ik-Kun;Koo, Ja-Keum;Kim, Sun-Min;Kim, Han-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.882-886
    • /
    • 2004
  • A nation have the regulation for a vehicle safety and interested in the side impact of a vehicle. But we spend a lot of money and time for the side impact test. So we must design a vehicle parts regard to the side impact test. This paper describes a new test method for side impact test. We used DFSS(Design For Six Sigma) process for design of door trim armrest. We searched the door trim armrest control factor and made the experiment plan. We researched the optimal design factor and improved the abdomen injury value of the human dummy.

  • PDF

Design of ramp-stress accelerated life test plans for a parallel system with two independent components using masked data

  • Srivastava, P.W.;Savita, Savita
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.45-63
    • /
    • 2017
  • In this paper, we have formulated optimum Accelerated Life Test (ALT) plan for a parallel system with two independent components using masked data with ramp-stress loading scheme and Type-I censoring. Consider a system of two independent and non-identical components connected in parallel. Such a system fails whenever all of its components has failed. The exact component that causes the system to fail is often unknown due to cost and time constraint. For each parallel system at test, we observe its system's failure time and a set of component that includes the component actually causing the system to fail. The stress-life relationship is modelled using inverse power law, and cumulative exposure model is assumed to model the effect of changing stress. The optimal plan consists in finding out the optimum stress rate using D-optimality criterion. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

Optimal Plan of Partially Accelerated Life Tests under Type I Censoring

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 1994
  • In this paper, we consider optimum plan to determine stress change times under the three-step stress PALTs, assuming that each test units follows an exponential distribution. The tampered random variable(TRV) model for the three-step stress PALTs setup are introduced, and maximum likelihood estimators(MLEs) of the failure rate and the acceleration factors are obtained. The change times to minimize the generalized asymptotic variance(GAVR) of MLEs of the failure rate and the acceleration factors are proposed for the three-step stress PALTs.

  • PDF

A Study of Dependent Nonstationary Multiple Sampling Plans (종속적 비평형 다중표본 계획법의 연구)

  • 김원경
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2000
  • In this paper, nonstationary multiple sampling plans are discussed which are difficult to solve by analytical method when there exists dependency between the sample data. The initial solution is found by the sequential sampling plan using the sequential probability ration test. The number of acceptance and rejection in each step of the multiple sampling plan are found by grouping the sequential sampling plan's solution initially. The optimal multiple sampling plans are found by simulation. Four search methods are developed U and the optimum sampling plans satisfying the Type I and Type ll error probabilities. The performance of the sampling plans is measured and their algorithms are also shown. To consider the nonstationary property of the dependent sampling plan, simulation method is used for finding the lot rejection and acceptance probability function. As a numerical example Markov chain model is inspected. Effects of the dependency factor and search methods are compared to analyze the sampling results by changing their parameters.

  • PDF

Planning Accelerated Degradation Tests: the Case of Gamma Degradation Process (열화가 감마과정을 따르는 경우 가속열화시험의 최적 계획)

  • Lim, Heonsang;Lim, Dae-Eun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.2
    • /
    • pp.169-184
    • /
    • 2015
  • Purpose: This paper is concerned with optimally designing accelerated degradation test (ADT) plans based on a gamma process for the degradation model. Methods: By minimizing the asymptotic variance of the MLE of the q-th quantile of the lifetime distribution at the use condition, the test stress levels and the proportion of test units allocated to each stress level are optimally determined. Results: The optimal plans of ADT are developed for various combination of parameters. In addition, a method for determining the sample size is developed, and sensitivity analysis procedures are illustrated with an example. Conclusion: It is important to optimally design ADT based on a gamma process under the condition that a degradation process should be always nonnegative and strictly increasing over time.

Bilevel-programming based failure-censored ramp-stress ALTSP for the log-logistic distribution with warranty cost

  • Srivastava, P.W.;Sharma, D.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.85-105
    • /
    • 2016
  • In this paper accelerated life testing is incorporated in quality control technique of acceptance sampling plan to induce early failures in high reliability products.Stress under accelerated condition can be applied in constant-stress, step-stress and progressive-stress or combination of such loadings. A ramp-stress results when stress is increased linearly (from zero) with time. In this paper optimum failure-censored ramp-stress accelerated life test sampling plan for log-logistic distribution has been formulated with cost considerations. The log-logistic distribution has been found appropriate for insulating materials. The optimal plans consist in finding optimum sample size, sample proportion allocated to each stress, and stress rate factor such that producer's and consumer's interests are safeguarded. Variance optimality criterion is used when expected cost per lot is not taken into consideration, and bilevel programming approach is used in cost optimization problems. The methods developed have been illustrated using some numerical examples, and sensitivity analyses carried out in the context of ramp-stress ALTSP based on variable SSP for proportion nonconforming.

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF

Economic Design of A Zero-Failure Reliability Demonstration Test Considering Capacity Limitation of Test Equipment (시험 장비의 용량제한을 고려한 무고장 신뢰성 시험의 경제적 설계)

  • Han, Sook Hyun;Yun, Won Young;Seo, Sun Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.341-358
    • /
    • 2021
  • Purpose: After product development, a Reliability Demonstration Test(RDT) is performed to confirm that the target life has been achieved. In the RDT, there are cases where the test equipment cannot accommodate all samples. Therefore, this study considers a test method to most economically demonstrate the target life of the product at a certain confidence level when the sample size is larger than the capacity of the test equipment. Methods: If the sample size is larger than the capacity of the test equipment, test equipments may be added or the test time of individual samples may be increased. So the test method is designed to cover this situation with limited capacity. A zero-failure test method is applied as a test method to RDT. To minimize the cost, the test cost is defined and the cost function is obtained. Finally, we obtain the optimal test plan. Results: A zero-failure test method is designed when the sample size is larger than the capacity of the test equipment, and the expected total cost is derived. In addition, the process of calculating the appropriate sample size, test time, and number of test equipment is illustrated through an example, and the effects of model parameters to the optimal solutions are investigated numerically. Conclusion: In this paper, we study a zero-failure RDT with test equipment that has limited capacity. The expected total cost is derived and the optimal sample size, test time, and number of test equipment are determined to minimize the expected total cost. We also studied numerical examples and for further studies, we can relax some restrictions in the test model and optimize the test method.

Determination of sample size to serological surveillance plan for pullorum disease and fowl typhoid (추백리-가금티푸스의 혈청학적 모니터링 계획수립을 위한 표본크기)

  • Pak, Son-Il;Park, Choi-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.4
    • /
    • pp.457-462
    • /
    • 2008
  • The objective of this study was to determine appropriate sample size that simulated different assumptions for diagnostic test characteristics and true prevalences when designing serological surveillance plan for pullorum disease and fowl typhoid in domestic poultry production. The number of flocks and total number of chickens to be sampled was obtained to provide 95% confidence of detecting at least one infected flock, taking imperfect diagnostic tests into account. Due to lack of reliable data, within infected flock prevalence (WFP) was assumed to follow minimum 1%, most likely 5% and maximum 9% and true flock prevalence of 0.1%, 0.5% and 1% in order. Sensitivity were modeled using the Pert distribution: minimum 75%, most likely 80% and maximum 90% for plate agglutination test and 80%, 85%, and 90% for ELISA test. Similarly, the specificity was modeled 85%, 90%, 95% for plate agglutination test and 90%, 95%, 99% for ELISA test. In accordance with the current regulation, flock-level test characteristics calculated assuming that 30 samples are taken from per flock. The model showed that the current 112,000 annual number of testing plan which is based on random selection of flocks is far beyond the sample size estimated in this study. The sample size was further reduced with increased sensitivity and specificity of the test and decreased WFP. The effect of increasing samples per flock on total sample size to be sampled and optimal combination of sensitivity and specificity of the test for the purpose of the surveillance is discussed regarding cost.