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Abstract: In this paper accelerated life testing is incorporated in quality control technique 
of acceptance sampling plan to induce early failures in high reliability products.Stress 
under accelerated condition can be applied in constant-stress, step-stress and progressive-
stress or combination of such loadings. A ramp-stress results when stress is increased 
linearly (from zero) with time. In this paper optimum failure-censored ramp-stress 
accelerated life test sampling plan for log-logistic distribution has been formulated with 
cost considerations. The log-logistic distribution has been found appropriate for insulating 
materials. The optimal plans consist in finding optimum sample size, sample proportion 
allocated to each stress, and stress rate factor such that producer’s and consumer’s 
interests are safeguarded. Variance optimality criterion is used when expected cost per lot 
is not taken into consideration, and bilevel programming approach is used in cost 
optimization problems. The methods developed have been illustrated using some 
numerical examples, and sensitivity analyses carried out in the context of ramp-stress 
ALTSP based on variable SSP for proportion nonconforming.  
 
Key Words: accelerated life test, ramp-test, producer’s risk, consumer’s risk, cumulative 
exposure model, Type-II censoring 
 
 

1. INTRODUCTION 
 
The lifetime of a product is an important quality characteristic for determining its 
acceptability with regard to its usefulness at the time it is put into the service. Sampling 
plans meant to determine the acceptability of the product with respect to its lifetime are 
called life test sampling plan or reliability sampling plans. Life test sampling coupled with 
Accelerated life testing help in testing the acceptability of high reliable products at lower 
cost and in shorter time. This has necessitated design of Accelerated Life Test Sampling 
Plans (ALTSPs). 
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Accelerated test condition includes stresses in the form of temperature, voltage, pressure, 
vibration, cycling rate, humidity, etc. In life testing, a fixed number of items are often 
tested simultaneously and the test continues for a fixed period of time (time-censoring or 
Type-I censoring) or until some fixed number of items on test fail (failure-censoring or 
Type-II censoring). Stress under accelerated condition can be applied using constant-stress, 
step-stress, progressive- stress, cyclic- stress, random- stress, or combinations of such 
loadings. In a progressive-stress loading, the stress level is increased continually either 
until the censoring time or up to the maximum stress level, which is maintained until the 
censoring time. A ramp-stress test results when stress is increased linearly (from zero) 
with time. In particular, a ramp test with two linearly increasing stresses is a simple ramp 
test. Ramp tests are used for example in fatigue testing (Prot (1948)), capacitors (Endicott 
et al (1965), Starr and Endicott (1961)), insulation (Goba (1969), Solomon et. al. (1965)), 
and integrated circuits (Chan (1990)), Nelson (1990), Chapter 10) has given some 
practical situations in which ramp-stress ALT has been used. Bai et. al. (1992), Yin and 
Sheng (1987), Srivastava and Shukla (2009), Srivastava and Mittal (2012a), Srivastava 
and Mittal (2012b) have studied ramp-stress ALT test.  
Life test sampling plans (LSPs) involving single sample under Type-I and Type-II 
censoring schemes have been studied extensively in the literature. A rich literature exists 
on designing LSPs in the case of exponential life distribution. Early work includes Epstein 
and Sobel (1953) in which LSPs are developed under Type-II censoring. In Spurrier and 
Wei (1980), Type-I censoring is assumed and LSPs are obtained considering the producer 
risk only. Later, Jeong and Yum (1995) extended the Spurrier and Wei (1980) work to the 
case where both the producer and consumer risks are considered.  The design of LSPs 
under Type-I censoring and intermittent monitoring has been presented by Kim and Yum 
(2000). For the Weibull distribution, many authors have developed LSPs under Type-II 
censoring (e.g., see Soland (1968), Schneider (1985), Kwon (1996), Wu and Tsai (2000), 
McKane et. al. (2005)).   
However these LSPs are designed under use conditions. (Wallace, (1985)) has stressed the 
need for introducing ALT to the future plan of MIL-STD-781. Yum and Kim (1990) have 
developed an accelerated life test sampling plan for the exponential distribution based on 
two stress levels and Type II censored data, and Hsiesh (1994) has extended their work 
and obtained sampling plans that minimize the total censoring number.Bai et. al. (1993) 
have designed failure-censored accelerated life test sampling plans for lognormal and 
Weibull distributions in which optimum total sample size, sample proportions allocated to 
each stress and lot acceptability constants are determined when the test uses two 
prescribed levels of stress higher than use condition with a given degree of censoring at 
each stress. Bai et. al. (1995) have devised failure-censored constant-stress accelerated life 
test sampling plans for Weibull distribution under expected test time constraint. A cost 
model for an ALTSP has been constructed by Lin and Chiu (1995). Seo et. al. (2009) have 
designed optimum time-censored and failure-censored constant-stress ALTSPs for 
Weibull distribution with non constant shape parameter. Optimum failure–censored step-
stress ALTSPs for Weibull distribution have been formulated by Chung et. al. (2002).  
However, no work seems to exist in the literature that incorporates ramp-stress accelerated 
life testing in acceptance sampling plan. In this paper, we have formulated failure-
censored ramp-stress ALTSPs with warranty. We have used single sampling plan by 
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variables for proportion nonconforming. The basic idea behind variable sampling for 
proportion nonconforming is to show that the sample results are sufficiently far within the 
specification limit(s) to assure the acceptability of lot with reasonable probability. The 
methods commonly used to estimate the proportion nonconforming of a lot are X -Method, 
k-Method, and M-Method (Schilling and Neubauer (2009)). We have used Schneider’s 
(1985) approach to k-Method with the sample average X  replaced by MLE, μ̂ , of location 
parameter, and σ replaced by MLE, σ̂ , of scale parameter of the log lifetime distribution. 
Warranty is a seller’s assurance to the purchaser that the goods or property is as 
represented and, if not, will be replaced or repaired (Neufeldt and Guralnik (1953)). The 
seller’s assurance to the buyer can be considered to be a contractual agreement between 
the two parties and becomes effective upon the sale of the product. The optimal plan 
consists in finding optimum sample size, sample proportions allocated to each stress, and 
stress rate factor by minimizing the expected total cost per lot. Finding the optimal plan by 
minimizing the asymptotic variance of test-statistic and expected total cost subject to the 
constraints that the probability of accepting a good lot is at least 100(1−α ) % and 
probability of accepting a bad lot is at the most 100β  % helps in safeguarding producer’s 
interest as well as consumer’s interest. Sensitivity analysis has been carried out, and the 
method developed has been illustrated using a numerical example. 
 
Acronyms 
 
ALT  accelerated life test 
ALTSP              accelerated life test sampling plan 
SSP  single sampling plan 
Asvar  asymptotic variance 
cdf  cumulative distribution function 
pdf  probability density function  
MLE  maximum likelihood estimate 
FRW   free replacement warranty 
PRW   pro-rata warranty 
GRW   general rebate warranty 
 
Notation 
 

iψ   
Stress rate at level i, ψi > 0 , i=1,2  

ξi Stress-rate factor; ξ1 < ξ2 = 1; ξi = ψi/ ψ2, i=1,2 
,φ φ  Proportion of sample allocated to stress rates ψ1 and ψ2, respectively; 1φ = −φ  

s(y) Stress at failure time y 
s0 Stress level under normal operating conditions or design constant stress 

*φ  Optimum   Optimum proportion of sample allocated to stress rate ψ1 
N Total number of test items in a ALT 
ni Total number of test items allocated to stress level i; i = 1, 2 (n = n1 + n2) 
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ri Number of items failed before censoring at stress rate ψi, i = 1, 2 
qi Proportion of failures at stress rate ψi, i = 1, 2, 1 1 1 2 2 2q r / n ,  q r / n= =  
τ Censoring time 
τ1, τ2       Time at which nq1

th and nq2
th failures occurs 

τi´ i i(ln(τ ) –μ(ξ ))/σ ; Standardized log censoring time at stress rate factor ξi,  
i = 1, 2 

α, λ    Shape and scale parameters of  log-logistic  life distribution 
γ0, γ1 Parameters of the inverse power law, 1 0γ > 0,   < γ < −∞ ∞   
μ, σ Location, scale parameter of the transformed distribution 
T Test-statistic used to decide the lot acceptability 
~
α , 

~
β  Producer’s risk and consumer’s risk; 0 < 

~
α  < 1, 0 < 

~
β  <1 

p1, p2 Fraction non-conforming to be accepted with probability atleast 1− α , and 
rejected with probability 1 β−  

Φ(·) Cdf of standard normal distribution 
H(·) Cdf of logistic distribution 
wp Quantile p of standard normal distribution; Φ(wp) = p 
zp Quantile p of standard logistic distribution; zp = –ln[(1–p)/p] 
K Lot acceptability constant 
Cs Cost of sampling and putting an item on test 
Cτ Cost per unit of test time 
Cre Cost of rejecting an item 
Cw Cost associated with an external failure 
P1 probability that a unit will fail by time τ  at ψ2  and is given by 

( ) 10 1 1
γγ 1/(1+γ ) α(1+γ ) 1

0 2 11 {1 + [τ/((e s /(ψ ) (1+γ )) )] }−−  
P2 probability that a unit will fail by time τ  at ψ2  and is given by 

( ) 10 1 1
γγ 1/(1+γ ) α(1+γ ) 1

0 2 1 11 {1 + [τ/((e s /(ψ ξ ) (1+γ )) )] }−−  
 
 

2. THE MODEL 
2.1 Basic assumptions 
 
The stress rates ψ1 and ψ2 (ψ1 < ψ2) are used in a ramp-test. 
1) At any constant stress, s, the product life, Y, has a log-logistic distribution. 
2) For the effect of changing stress, the linear cumulative exposure model holds (see 

Nelson (1990); Yin and Sheng (1987); and Nilsson (1985)). 
3) The inverse power law holds for λ(s) where λ is linear function of a (possibly 

transformed) stress, i.e., 
1

0

γ
γ 0sλ(s) e

s
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 

where parameters γ0 and γ1 are the characteristics of the product . 
4) The test units are statistically independent and identically distributed. 
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5) The stress applied to test units is continuously increased with constant rate ψ from zero.  
 
2.2 Log-logistic distribution  
 
The cdf and pdf of log-logistic distribution is given by: 

              α 1F(y;α,λ) = 1 (1+(y/λ) ) , y 0, α > 0, λ > 0−− ≥ ,    (1) 

              α 1 α 2f(y;α,λ) = (α/λ)(y/λ) (1+(y/λ) ) , y 0, α > 0, λ > 0− − ≥ ,          (2)                                   
where α and  λ are shape and scale parameters, respectively. 
 
2.3 Life distribution under ramp-test 
 
The stress at failure time y is (from assumption #6) s(y) = ψy. 
From the linear cumulative exposure model and the inverse power law, the cdf of the 
lifetime Y of a unit tested under stress rate ψ is: 

              G(y) = F(ε(y)) ,                                                 (3) 
where F(·) is the assumed cdf (see (3)) with the scale parameter λ set equal to one, 

              
y

0
ε(y) 1 (s(u))du= λ∫                                     (4) 

is the cumulative exposure (damage) model. Hence, the cdf, and pdf, respectively, of log-
logistic distribution reduces to 

                            [ ] [ ]
y y

0 0

 du (s(u)) 1  du (s(u))G(y; , )  = ,
α α

⎛ ⎞ ⎛ ⎞
λ + λ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
α η ∫ ∫  

( ) ( )  y 1 y ,=  ′ ′α αη + η                                                (5) 

              ( ) ( )( )2
y 1 yg(y; , ) ,′ ′α −1 α′α η η + ηα η =                                                      (6) 

where 1 (1 )′α =α + γ , ( ) ( )1
0 1

1/ 1

1 0e ( 1)(s / )
γ +γ γη γ + ψ= , G(·) is the log-logistic distribution 

with scale parameter η and shape parameter α´. 
 
2.4 Life test procedure 
 
1) Out of total ‘n’ ( n n n= φ+ φ ) items, ‘ nφ ’ items randomly chosen are allocated to 

stress rate ψ1 and the remaining ‘ nφ ’ items are allocated to stress rate ψ2. 
2) The test is continued until: a) all failure times are observed, or b) at each stress rate ψi, 

the test run until ri failures are observed, i = 1, 2. 
 
2.5 Lot acceptance sampling procedure 
 
Assume that one-sided lower specification limit, L, is assigned to the lifetime of a product. 
Instead of using the actual life time, Y, X = ln(Y) is used. Thus, X follows logistic 
distribution with location parameter μ = ln(η) and scale parameter σ = (1/α´). The lower 
specification limit on X is L' = ln(L).  
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The pdf and cdf for X, respectively are 
              ( )2(x ) (x )e 1 eh(x; , )  ,−μ σ −μ σσ +μ σ =

                                       
(7) 

  ( )(x ) (x )e (1 e )  .H(x; , )  1 −μ σ −μ σ− +μ σ =                                       (8) 

  
2.6 Log likelihood 
 
Let 

i1 2 nX ,X ,...,X be a random sample of size ni from logistic distribution and let 

i(1) (2) (n )X , X ,...,X  be the order statistic based on 
i1 2 nX ,X ,...,X . The stress rate factor ξ 

at ith  stress level is ξi = ψi/ψ2, where ψi is the stress rate ψ at the ith stress level ; i = 1, 2. 
For the high stress rate, ψ2, ξ2 = 1,  and the low stress rate factor is ξ1 = ψ1/ψ2.The location 
parameter of lifetime distribution of a unit tested under stress rate factor ξi is                                                          
              i i 1 0 1 0 i 2 1μ(ξ ) = ln(η(ξ )) = (1/(1+ γ ))(γ + γ ln(s /ξ ) + ln(1+γ )); i .ψ  1,  2=  
Define the indicator function I I(x)≡  in terms of the censoring time τ at stress ξi by 

1, if  x  ln(τ),   failure observed by time ln(τ)
I

0, if  x ln(τ),   censored at time ln(τ)             .
≤⎧

= ⎨ >⎩
. 

The log-likelihood function L from an observation x at stress ξ is
  ( ) ( )( ){ } ( )( )L I(x) ln x (ξ) 2 ln(1 exp x (ξ) I(x) ln 1 exp .′= − σ + −μ σ − + −μ σ − + τ

 Since ramp-test is to be carried out in two test chambers, namely, one in which test units 
are tested at low stress rate and the other in which they are tested at higher stress rate, so 
′τ takes the form τ1′ and τ2′ accordingly, where τ1′ is taken as the nq1

th order statistic of a 
random sample of size n from the standard logistic distribution under low stress rate factor 

1ξ  , and τ2′ as  nq2
th order statistic from the same distribution under high stress rate factor 

2ξ . 
The maximum likelihood estimates 0 1ˆ ˆ ˆ, ,  and γ γ α  are the parameter values that maximize 
the sample log-likelihood L  summed over all the test units. 
 
 

3. THEORITICAL DERIVATIONS 
 
3.1 Fisher information matrix 
 
The elements of the Fisher information matrix are the negative expectations of second 
order partial derivatives of the log-likelihood function of a test unit with respect to γ0, γ1, 
and α.  
Since τ1′ and τ2′ are taken as the nq1

th and nq2
th order statistics of a random sample of size 

n from the standard logistic distribution, the expectations can be approximated by 
replacing τ1′ by E[τ1′] ≈ H−1(q1) = 1qz and τ2′ by E[τ2′] ≈ H−1(q2) = 2qz  (Schneider(20)), 

where H−1(·) is the inverse function of the standard logistic distribution, and qi is 
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proportion of failures at stress rate ψi, i = 1, 2. The Fisher information matrix with ramp 
rate factor, ξi, is obtained as: 

i

2 2 2 2
i 0 i 0 1 i 0

2 2 2 2
0 1 i 0 1 i 1 i 1

2 2 2 2
i 0 i 1 i

E{ L / }   E{ L / } E{ L / }
F ( , , ) E{ L / } E{ L / }   E{ L / }

E{ L / } E{ L / } E{ L / }   
ξ

⎡ ⎤−∂ ∂γ −∂ ∂γ ∂γ −∂ ∂γ ∂α
⎢ ⎥γ γ α = −∂ ∂γ ∂γ −∂ ∂γ −∂ ∂γ ∂α⎢ ⎥
⎢ ⎥−∂ ∂γ ∂α −∂ ∂γ ∂α −∂ ∂α⎣ ⎦

 

where the values of these elements are given in Appendix A. 
Since n1 units are tested under stress rate factor ξ1 = ψ1/ψ2, and remaining, n2, units are 
tested under stress rate factor ξ2 = 1, the Fisher information matrix for the plan with a 
sample of n independent items at two stress levels is 

1 20 1 0 1F n F ( , , ) n F ( , , )ξ ξ= φ γ γ α + φ γ γ α . 
 
3.2 Asymptotic variance of the test-statistic 
 
For any plan, the asymptotic variance-covariance matrix of the maximum likelihood 
estimates  0 1ˆ ˆγ , γ  and α̂  is the inverse of the corresponding Fisher information matrix, i.e., 

0 0 1 0

1 0 1 1

0 1

ˆ ˆ ˆ ˆ ˆVar[ ]               Cov[ ,             Cov[ ,
ˆ ˆ ˆ ˆ ˆCov[ , ]          Var[ ]        Cov[ ,
ˆ ˆ ˆ ˆ ˆCov[ ,            Cov[ ,              Var[ ]

γ γ γ ] γ α]⎡ ⎤
⎢ ⎥Σ = γ γ γ γ α]⎢ ⎥
⎢ ⎥α γ ] α γ ] α⎣ ⎦

= F−1. 

The asymptotic variance of the test-statistic T is given by 
2

0 0 0 0ˆ ˆ ˆ ˆAsvar(T)  Asvar( ) 2k Ascov( , ) ٛ k Asvar= μ − μ σ + σ ,                     (9) 

where 0 0 0 0ˆ ˆ ˆ ˆAsvar( ),  Ascov( , ) and Asvar( )μ μ σ σ  are obtained from the elements of 
inverse of the Fisher information matrix. 
 
3.3 Operating characteristic (OC) curve 
 
Based on the asymptotic distribution theory, the test-statistic T is asymptotically normally 
distributed with mean 0 0kμ − σ and variance= V/n. The standardized variate, 

( )0 0U n T k V= − μ − σ⎡ ⎤⎣ ⎦ ~ N(0, 1) as n → ∞, where Asvar(T) = V/n .     (10) 

The OC curve is obtained by plotting Lp against the fraction nonconforming, p, where 

 ( )( )p 0 PL   P[T L ]  1 U n z k V ,⎡ ⎤′= ≥ = −Φ ≥ σ × +⎣ ⎦         (11) 

and ( )p 0 0z L '= −μ σ is the quantile of the standard logistic distribution corresponding to 
the fraction nonconforming p, and Ф is the standard normal distribution function.  
 
 

4. OPTIMAL PLANS 
 
The optimal plans under ramp-stress have been explained in 4.1 and 4.2 without and with 
cost consideration respectively. 
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4.1 Optimal plan without cost consideration 
 
The optimal plan is obtained using variance optimality criterion. It consists in finding out 
optimal sample size, lot acceptability constant, low stress rate, and sample proportion 
allocated to each stress such that producer’s risk and consumer’s risk are safeguarded by 
minimizing V = nAsvar(T) (see (9) and (10)). The high stress rate ψ2 is known from 
technical considerations. 
 
4.2 Optimal plan with cost consideration 
 
The optimal plan is determined by finding out optimum sample size, lot acceptability 
constant, sample proportion allocated to each stress, and low stress rate by minimizing the 
expected total cost per lot comprising warranty costs with respect to acceptance or 
rejection of the lot, sampling cost, and testing cost such that producer’s risk and 
consumer’s risk are safeguarded. The high stress rate ψ2 is known from technical 
considerations. Bilevel programming approach is used for this purpose. 
 
 

5. COST STRUCTURE 
 
In this section cost structure that takes into consideration testing cost, sampling cost, and 
warranty costs based on rejection and acceptance of a lot for adoption of an optimal test 
planning has been obtained. 
A warranty policy is defined mainly by two elements, viz., the period of coverage, and the 
terms of payment or compensation to the buyer. The commonly used warranty policies are 
free replacement warranty (FRW), and pro-rata warranty (PRW). The FRW does not 
charge any fee from the consumer during the term of warranty; the cost of replacement or 
repair of the warranted item is covered completely by the manufacturer during the 
warranty period. The pro-rata warranty (PRW) involves a sharing of the repair or 
replacement cost by the manufacturer and customer based on some product age dependent 
formula, the most common being linear. Occasionally, FRW, and PRW can be combined 
as one policy, called a general rebate warranty (GRW), to provide consumers with more 
choices (see Murthy and Blischke (2000)).  
The company takes responsibility for the product warranty once the batch has been 
accepted by the company; and the periods of FRW and PRW are predetermined as ‘cf’, 
and ‘cp’, respectively. However, the pro-rata warranty of the producer between cf, and cp is 
assumed to vary in time instead of being constant. As a result, the warranty costs of the 
company could be expressed by a piecewise function of life time X which is given as: 

w f

w w p p f f P

P

C ,                              if x < c
Cost (X) C (c x) / (c c ),  if c  x < c , 

0,                                 if  x  c

⎧
⎪= − − ≤⎨
⎪ ≥⎩

 

where X is the lifetime of the product .  
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Since X follows log-logistic distribution, therefore the expected warranty cost per product 
is given by 

pf

f

cc

0 w w p p f
0 c

E( , ) C f (t)dt C ((c t) / (c c ))f (t)dt .γ α = + − −∫ ∫  

Thus, the expected cost resulting from selling the acceptance lot is given by 
0 0 1W( , ) (N n)E( , )P[T L  | p ]′γ α = − γ α ≥  

and the expected  rejection cost resulting from the rejecting the lot is given by 
0 re 1W( , ) (N n)C P[T L  | p ]′γ α = − <  

Let Cs be the cost of sampling and putting an item on test and Cτ be the cost per unit of test 
time. Because the sampling cost Cs, and the testing cost Cτ can both be obtained by simply 
multiplying the unit cost of sampling with the sample size, and multiplying the unit cost of 
testing with the censoring time, i.e. ‘nCs’, and ‘τCτ’, respectively, therefore, the expected 
total cost per lot for the given sampling plan is given by  

 ECost(n, 0 ,γ α ) = nCs + τCτ + W( 0 ,γ α ) + R( 0 ,γ α ) ,                                   (15) 
 
 

6. DESIGN OF OPTIMAL SAMPLING PLAN 
 
In this section, the optimal sampling plans under ramp-stress based on variable SSP for 
proportion nonconforming has been devised.  
 
6.1 Optimization problem without cost consideration 
 
In determining an optimal sampling plan for two given points 

 
1(p , )α  and 2(p , )β  on the 

OC curve, the two equations have to be solved for n* and k*, where wα  and 1w −β  denotes 

the quantiles of the standard normal distribution. 
 ( )( )10 Pw n z k V 0,α − σ × + =

 
                                          (12) 

          ( )( )20 P1w n z k V 0.−β − σ × + =                                         (13) 

On solving (12) and (13) for n* and k*, we have  

 ( ) ( )( )1 2

* 2
P P 01n w w z z V ,α −β= − − σ

        
                            (14a) 

and 
 ( )1 2

*
P P1 1k w z w z w w .α α−β −β= − −                                         (14b) 

The value of k* is determined by the two points 1(p , )α  and 2(p , )β  on the OC curve and 
n* depends on these two points and V. See Schneider (1985) for reference. 
To minimize total sample size n, it is reasonable to design the test plan so that V is 
minimized. 
Thus, the optimal design problem for obtaining optimal sampling plan under ramp-test 
with time-censored data is formulated as:  
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  Minimize V 

   
1

2

P 0.1, 

P 0.1,

s.t.      0 1,

           + 1,

          

          

φ ≥

φ ≥

≤ φ ≤

φ φ =
 

           10 .ξ 1< <      (15)  
Since the sample size is unknown while minimizing V, therefore instead of giving 
minimum mean number of failures (MMNF) a pre-specified value in advance, 0.1, say,  is 
assigned to the ratio of MMNF and the sample size. Another suitable number for MMNF 
can be specified according to cost, time, and precision implications. 
 
6.2 Optimization problem with cost consideration 
 
Bilevel-programming problem is a hierarchical mathematical optimization problem 
containing an optimization problem in the constraints. In this paper, in the first stage, 
optimum stress rates and sample proportion allocated to each stress level are obtained by 
minimizing Asvar(T); followed by the second stage in which optimal sample size has been 
obtained by minimizing the expected total cost per lot of the sampling plan. To obtain an 
optimal total sample size, it is necessary to make sufficiently low size of risk that the 
producer and consumer are willing to accept, say at most α  and β , respectively 
evaluated at the corresponding acceptable and rejectable non-conforming proportions p1 
and p2. Thus, the optimum sample size is determined by minimizing the expected 
warranty cost per lot subject to the constraints 1P[T L | p ]  1′≥ ≥ −α  and 

2P[T L | p ]  ′≥ ≤ β  are satisfied. Mathematica 8.0 has been used to formulate the optimal 
plan. 
The optimal design problem can be formulated as: 

 

1,

1 1

0n

1

               Min  Asvar(T)

s.t.           
               0 1,  where ( , ) solves

               Min  ECost(n,  , )

                              s.t.           P[T L | p ]  1 ,  

       

0 1,
φ ξ

< ξ < φ ξ

γ α

′≥ ≥ −α

≤ φ ≤

2        P[T L | p ]  ,  N n,n

⎧
⎪
⎪
⎪
⎪⎪

⎧⎨
⎪⎪
⎪⎪ ⎨⎪ ⎪⎪ +′≥ ≤ β ≥ ∈Ζ⎪⎪ ⎩⎩

  

(16) 

Let    
1 1 1

2 0 1 2

{( , ) : 0 1},

{(ECost(n,  , )) : P[T L | p ]  1 ,  P[T L | p ]  ,  N n, n },

0 1,  Ψ = φ ξ < ξ <
+′ ′Ψ = γ α ≥ ≥ −α ≥ ≤ β ≥ ∈Ζ

≤ φ ≤
 



 
 
 
 
 P. W. Srivastava, D. Sharma 95

1

* *
1 1 1

,
and ( , ) = Argmin{n / F  : ( , ) }.

φ ξ
φ ξ φ ξ ∈Ψ

 
Then, the optimization problem reduces to: 

{ }* *
0 2 1 1n

Min  ECost(n,  , ) :  n ,  ( , ) ( , )γ α ∈Ω φ ξ = φ ξ      (using (16)). 

Since, the optimum ramp-test depends on 1 2 0 20 1q ,q ,  s , α, γ , γ  and ψ ; one must obtain 
their values from experience, similar data, or a preliminary test to achieve the minimum of 
Asvar(T) in the ALTSP for the optimum values of 1and φ ξ . The optimal value of sample 
size is obtained by minimizing expected warranty cost per lot. 
 
 

7. AN ILLUSTRATIVE EXAMPLE 
 
Consider an IC manufacturing company, XYZ. Since IC products are relatively expensive, 
it is worthwhile to conduct a more cost saving life testing program in which an appropriate 
sample size can be found out to determine the acceptance or rejection of a batch of IC 
products with the objective of cost minimization for the company. However, given that 
various relevant costs would influence the profits of XYZ Corporation in the process of 
the life test, it would be essential for the managers to select the appropriate decision 
parameters regarding the accelerated life test sampling plan. 
 
7.1 Without cost consideration 
 
The determination of failure-censored optimal sampling plan under ramp-stress based on 
SSP for proportion nonconforming depends on:  0 1 0 12 2α,  ,  ,  s ,  ,  q , and qγ ψγ . 
One must obtain their values from experience, similar data, or a preliminary test. 

1(p ,1 )−α
 
and 2(p ,  )β

 
are chosen by taking in to consideration producer’s and 

consumer’s interests. The hypothetical data set used is: 
0 220 1 1α 1.5,  7.5,  0.1,  s 20,  1.1,  q q 0.2= γ = γ = = = = =ψ . 

 
Step 1. OC Curve  
Select two points 1(p ,  1? α  and 2(p ,  )β  on the OC curve as (0.01, 0.99) and  
(0.10, 0.10), respectively. 
 
Step 2. Acceptability constant  
Compute the acceptability constant k, using (14b).  
 
Step 3. Optimal plan  
Determine * *

1 1( , )φ ξ  which minimize V evaluated at k*. The value of k* obtained is  
k* = 3.049. 
The optimal low stress rate factor, optimal proportion of test units allocated at low and 
high stress rates, optimal sample size, optimal number of samples at low stress rate and at 
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high stress rate, respectively, of the test plan are: *
1 0.129, ξ =  

* *
1 2  a0.811 nd 0.189φ = φ = . 

Thus, the optimum low stress rate is *
1ψ  = *

1 2ξ ψ = 0.499 ≈ 0.5 KV/sec. Optimal sample 
size is 38 and optimal number of units to be tested at low stress rate 1ψ  is 31, and at high 
stress rate 2ψ  is 7. 
 
Step 4. Simulated data 
The simulated data set is given in Table 1 include 38 simulated observations for low and 
high stress rates.   
 
Table 1. Simulated Data: Failure-censored sample on a simple ramp-test using log-logistic 
model (α = 1.5, γ0 = 7.5, γ1 = 0.1, s0 = 20, ψ2 = 1.1,  *

1 2q q 0.2,  k 3.049)= = =  

Stress rate Failure times 
Number of 
censored 

units 
*
1 0.129ξ =  

(Low Stress rate) 

6.459, 7.095, 5.940, 7.112, 6.720, 6.931, 7.304, 6.367, 
6.277, 5.973, 7.214, 6.820, 5.943, 6.493, 5.951, 7.243, 
6.675, 6.963, 7.007, 7.135, 6.147, 5.627, 6.189, 6.105 

7 

2  1ξ =   
(High Stress 

rate) 
6.585, 6.489, 6.850, 6.627, 6.623, 6.802 1 

 
 

 
Figure 1. The log-logistic probability plot at low stress for the simulated data 

0 1 0 2(α 1.5,  7.5,  0.1,  s 20,  1.1,  ψ= γ = γ = = =  *
1 2q q 0.2,  k 3.049)= = =  
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Step 5. Graphical goodness of fit 
Figure 1 shows the associated log-logistic probability plot at low stress. The failure times 
in Table 1 at low stress are arranged in increasing order and are ranked from 1,2,…,i,…,n. 
The plotted points tend to follow straight line, which is substantiated by fitting straight 
line to these points resulting in high value of coefficient of determination r2 = 0.937. The 
log-logistic distribution therefore appears to describe the data adequately. 
 
Similarly, Figure 2 shows the associated log-logistic probability plot at high stress. The 
plotted points tend to follow straight line, which is substantiated by fitting straight line to 
these points resulting in high value of coefficient of determination r2 = 0.603. The log-
logistic distribution therefore appears to describe the data adequately. 
 

 

 
Figure 2. The log-logistic probability plot at high stress for the simulated data

0 1 0 1 22(α 1.5,  7.5,  0.1,  s 20,  1.1,  q q 0.2,= γ =ψ= γ = = = =  *k 3.049)=  
 
Step 6. MLEs of the design parameters 
The MLEs of the design parameters obtained using simulated data in Table 1 are 

0 1ˆ ˆ ˆα = 1.278, γ  = 1.770, γ  = 1.089 . 
These are obtained by using the NMaximize option of Mathematica 8.0. 
 
Step 7. Decision Criterion 
For given lower specification limit L′, lot is accepted if 0 0 0 0ˆ ˆ ˆ ˆμ kσ μ 3.049σ− = −  > L′, 
otherwise rejected.  
Figure 3 shows changes in the OC curve by taking values of 1(p ,1 )−α  and 2(p ,  )β  as 
(0.01, 0.99), (0.10, 0.10).  
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Table 2 depicts optimum sampling plan for various values of 1p  and  2p  when  

(1– α , β ) = (0.99, 0.10). It is observed that for given 1p  as 2p  increases n* and V* 

decrease.  

   
Figure 3.  OC Curve under failure-censored variable SSP for proportion nonconforming without 

cost consideration (α = 1.5, 0 7.5,γ = 1 0.1,γ =  
*

0 1 22s 20,  1.1,  q q 0.2,  k 3.049)= = = = =ψ  
 
 

Table 2. Optimal ALTSP under failure-censored variable SSP for proportion nonconforming 
without cost consideration when 1p  and 2p  change  

0 1 0 2(α 1.5,  7.5,  0.1,  s 20,  1.1,= ψγ = γ = = =   1 2q q 0.2)= =  
1−
α  β  1p  2p  k* *

1ξ  
*
1φ  

*
2φ  V* n* *

1n  
*
2n

0.99 0.10 0.001 0.01 5.416 0.866 0.586 0.414 33.261 182 107 75
   0.05 4.352 0.121 0.375 0.625 18.873 35 13 22
   0.10 3.870 0.293 0.909 0.091 13.854 18 17 2 
  0.01 0.05 3.531 0.183 0.789 0.211 10.879 117 92 25
   0.10 3.049 0.129 0.811 0.189 7.449 38 31 7 
   0.15 2.751 0.050 0.622 0.378 5.792 21 13 8 

 
 
7.2 With cost consideration 
 
Let the product lot size N be 2000 and the manager assesses various cost (in appropriate 
monetary units) with regard to the lot of IC products as: 

s re wC 250,  C 1200 ,  C 2500,  C 500τ= = = = . 
The components are sold under the general rebate warranty policy with cf = 100 and cp = 
450 unit times. An agreement between the producer and the consumer is considered to 
obtain an optimal failure censored acceptance sampling plan such that the respective 
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probabilities of rejecting a good item and accepting a bad item are at most α  = 0.01 and 
β  = 0.05, respectively.  
The following steps yield an optimum ramp-stress ALTSP. 
 
Step1. Select two points 1(p ,  1? α  and 2(p ,  )β  as (0.01, 0.99) and (0.05, 0.10) on the 
OC curve. 
 
Step2. Compute the acceptability constant k*, using formula in equation (14b).  
Since wα  = –2.326, 1w −β  = 1.282, 

1pz = –4.595, and 
2pz = –2.944, we have *k = 3.531. 

 
Step3. Consider a hypothetical data set as  0 1 0 21.5,  7.5 ,  0.1,  s 20,  1.1 ,α = γ =ψ= γ = =   

1 2 q q 0.2= = . Determine ( )* *,φ ξ  which minimize asymptotic variance V evaluated at 

k*. The optimal stress rate factor is obtained as *
1 0.189ξ = . The optimal proportion of test 

units allocated at low and high stress rates, respectively, are 
* *0.805 0.195 .φ = ⇒ φ =  

 
Step 4. The value of optimal sample size *n  is 189 which is precisely the minimal 
number of failures. The optimal number of samples at low stress rate *

1n  = 149 and at 

high stress rate *
2n  = 40. The optimal cost is 6,72,184 monetary units. The test is run until 

the number of failures at low stress rate *
1r  = 15 and at high stress rate *

2r  = 3 are reached.  
Let the lower specification limit of L hours (say) in the used condition, indicating that 
items with lifetime shorter than ln L are nonconforming. Using the data from the test, 
MLEs μ̂  and σ̂  are computed. Thus, the lot is accepted if *

0 0 0 0ˆ ˆ ˆ ˆμ k σ μ 3.531σ− = −  > ln 
L and reject it otherwise. 
 
 

Table 3. Optimal ALTSP under failure-censored variable SSP for proportion nonconforming 
with cost consideration when 1p  and 2p  change   

0 1 0 2(α 1.5,  7.5,  0.1,  s 20,  1.1,= ψγ = γ = = =   1 2q q 0.2)= =  

1−α  β  p1
 p2 k* *

1ξ
*φ V* n* ECost(n)

0.99 0.10 0.001 0.01 5.416 0.866 0.586 47.165 320 540,395
      0.05 4.352 0.121 0.375 23.513 81 508,242
      0.10 3.870 0.293 0.909 15.954 44 503,549
    0.01 0.05 3.531 0.189 0.805 11.807 189 522,361
      0.10 3.049 0.128 0.809 7.590 73 507,221
      0.15 2.751 0.050 0.622 5.962 45 503,609
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Figure 4. OC Curve under failure-censored variable SSP for proportion nonconforming with 

cost consideration (α = 1.5, 0 17.5,   0.1,γ = γ =  
*

0 1 22s 20,  1.1,  q q 0.2,  k 3.531)= = = = =ψ  
 
 
Table 3 presents optimum sampling plans assuming, 0 11.5,  7.5 ,  0.1,α = γ = γ = s 20,  =  

12 21.1 ,  q q 0.2ψ = = =  when 1(p ,1 )−α  and 1(p , )β  are (0.01, 0.99), (0.05, 0.10), 
respectively. It shows that for fixed p1 as p2 increases acceptability constant, optimal 
sample size, and expected total cost also decrease. 
The Figure 4 shows changes in the OC curve by taking values of 1(p ,  1? α  and 2(p ,  )β  
as (0.01, 0.99), (0.05, 0.10). 
 
 

8. SENSITIVITY ANALYSIS 
 
The sensitivity analysis identifies the sensitive parameters which need to be estimated 
with special care for the purpose of minimizing the risk of obtaining an erroneous optimal 
solution. In this section, the effects of %  change in the pre-estimated parameters γ0, γ1, α 
in terms of the relative increase of asymptotic variance of test-statistic, T, are presented 
for failure-censored (Type-II censored) data set in Table 2. 
The analysis is performed by changing only one parameter at a time and keeping others 
unchanged. The percentage deviation, PD, of an optimal setting is measured by 

** * *PD = (|Z  Z |/Z ) 100− × , where *Z  is the optimal asymptotic variance of T obtained 
with the given design parameters, and **Z  is the one obtained when the parameter is 
misspecified. Let n** be the optimal sample size Z resulting from the misspecified 
parameter. Table 2 shows that if the pre-estimates deviate from the true values by 

1% to 5%± ± , then the absolute relative change in asymptotic variance is not 
significantly large. Thus, the optimal setting of parameters is robust to the deviations from 
baseline parameters. 
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8.1 Without cost consideration 
 
Table 4 shows that irrespective of whether the incorrect variance is smaller or larger than 
the true variance, if the percentage deviation in variance is small then the proposed 
optimum plan is robust. 
 
Table 4. Optimal ALTSP when design parameter estimates change 0(α 1.5,  7.5,  = γ =

1 0 20.1,  s 20,  1.1,  γ = = =ψ 1 2q q 0.2,  = = * *k = 3.049, Z 7.449,  n 38)= =  
% 

Change α γ0 γ1 
*
1ψ

*
1ξ  

*φ  
*φ  Z** n* *

1n  
*
2n  PD 

1% 1.616 7.575 5.050 0.163 0.148 0.881 0.119 7.302 38 33 5 1.971 
-1% 1.584 7.425 4.950 0.156 0.142 0.841 0.159 7.600 38 32 6 2.030 
2% 1.632 7.650 5.100 0.146 0.133 0.844 0.156 7.160 38 32 6 3.883 
-2% 1.568 7.350 4.900 0.181 0.164 0.898 0.102 7.756 38 34 4 4.123 
3% 1.648 7.725 5.150 0.136 0.123 0.822 0.178 7.021 38 31 7 5.740 
-3% 1.552 7.275 4.850 0.188 0.171 0.906 0.094 7.917 38 34 4 6.281 
4% 1.664 7.800 5.200 0.132 0.120 0.821 0.179 6.887 38 31 7 7.544 
-4% 1.536 7.200 4.800 0.191 0.174 0.902 0.098 8.083 38 34 4 8.507 
5% 1.680 7.875 5.250 0.112 0.102 0.771 0.229 6.756 38 29 9 9.297 
-5% 1.520 7.125 4.750 0.138 0.126 0.750 0.250 8.254 38 29 10 10.803 

 
 
8.2 With cost consideration 
 
In Table 5, it is observed that if the pre-estimates deviate from the true values by 

1% to 5%± ± , then the absolute relative change in asymptotic variance is not 
significantly large. Thus, the optimal setting of Z is robust to the deviations from baseline 
parameters. 
 

Table 5. Optimal ALTSP when design parameter estimates change 
( 20 1 1 21.5,  7.5 ,  0.1,  s 20,  1.1 ,  q q 0.2,α = γ = γ = = = = =ψ  * *Z 11.807,  n 189)= =  

% 
Change α γ0 γ1 

*
1ψ  

*
1ξ

*φ *φ Z** n* *
1n *

2n  
Ecost(n) PD 

1% 1.515 7.575 0.101 0.156 0.142 0.698 0.302 10.665 174 122 52 670282 9.671 

-1% 1.485 7.425 0.099 0.202 0.184 0.777 0.223 11.100 180 140 40 671013 5.985 

2% 1.530 7.650 0.102 0.151 0.138 0.699 0.301 10.457 172 120 52 669930 11.433

-2% 1.470 7.350 0.098 0.179 0.163 0.712 0.288 11.328 183 130 53 671393 4.056 

3% 1.545 7.725 0.103 0.234 0.212 0.910 0.090 10.255 169 154 15 669587 13.145

-3% 1.455 7.275 0.097 0.195 0.178 0.734 0.266 11.563 186 136 50 671782 2.067 

4% 1.560 7.800 0.104 0.101 0.092 0.600 0.400 10.059 167 100 67 669252 14.807

-4% 1.440 7.200 0.096 0.149 0.136 0.622 0.378 11.805 189 118 71 672181 0.017 

5% 1.575 7.875 0.105 0.104 0.095 0.617 0.383 9.868 164 101 63 668924 16.422

-5% 1.425 7.125 0.095 0.122 0.111 0.554 0.446 12.055 192 106 86 672591 2.100 
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9. CONCLUSION 
 
In this paper, we have obtained an optimum ramp-stress accelerated life test sampling plan 
based on log-logistic distribution under Type-II censoring, assuming inverse power law 
and a cumulative exposure model. The optimal plans consist in finding optimum sample 
size, sample proportion allocated to each stress, and stress rate factor such that producer’s 
and consumer’s interests are safeguarded. Variance optimality criterion is used when cost 
is not taken into consideration, and bilevel programming approach is used in cost 
optimization problem. The methods developed have been illustrated using numerical 
examples, and results of sensitivity analyses carried out with respect to ramp-stress 
ALTSP. 
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Appendix 
 
The expectations of negative of second order derivatives given Li are 

( )( )
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and H( ) q ,  T 1/(1 ) log(1 ) log(s / ) .1 1 0 i 2 0

These expectations are calculated with the aid of ,  E[ ln L / ] 0,  for i 0,1,E[ lnL / ] 0′

′τ = + γ + γ + γ ξ ζ + γ

′∂ ∂γ = = ∂ ∂α =

=

 


