• Title/Summary/Keyword: Optical communication line

Search Result 154, Processing Time 0.034 seconds

Performance Analysis of an Optical CDMA System for multi-user Environment (다중 사용자 환경에서의 광 CDMA 시스템 성능 분석)

  • 전상영;김영일;이주희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1134-1141
    • /
    • 1999
  • In this paper, we implement an optical code division multiple access(OCDMA) system and analyze the performance of the implemented system. In the implemented system, a transmitter encodes input data into optical pulses by using laser diode, and spreads the encoded pulses in an encoder which consists of 4 stage delay lines. The decoder which is the same structure as that of encoder delays and combines the spreaded pulses, and thus recovers the original data. At first, we discuss the auto- and cross-correlations of OCDMA signals under both environments of single user and multi-users, and then verify the simulation results with experimental results. We also evaluate the effect of a number of stages of delay line and code length on the system performance through computer simulations. As experimental results we can see that if the decoder have the same configuration as that of encoder, the peak auto-correlation characteristics can be achieved, and thus we can recover the original data from received data. As simulation results we can see that although bit error rate decreases as code length decreases or the number of stage of delay line increases, it is difficult to implement the system because the pulse width becomes narrow. From the results, we can apply CDMA technologies to optical communication networks.

  • PDF

A Simple Analytic Method of Optical DFB Waveguides with Quarter-Wavelength Shifted Region (${\lambda}$/4 천이영역을 갖는 광 DFB도파로의 해석적 분석법)

  • Kim, June-Hwan;Ho, Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.36-43
    • /
    • 2001
  • We evaluate the optical characteristics of planar distributed feedback (DFB) waveguides with quarter-wavelength phase-shifter. To analyze explicitly its band-pass and resonance properties, we present and newly develop a modal transmission-line theory (MTLT) based on Floquet's theorem and Babinet's principle. The numerical results reveal that this approach offers a simple and analytic algorithm to analyze either the filtering or the oscillating characteristic of DFB gratings with quarter-wavelength phase-shifter, and has a novel physical insight that may not be achieved in other approximating approaches

  • PDF

Saturated absorption spectroscopy of 13C2H2 in the 1550 nm region (1550 nm 영역에서 아세틸렌 분자의 포화흡수분광)

  • 문한섭;이원규;서호성
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.177-182
    • /
    • 2004
  • We have observed the saturated absorption spectrum of the P(16) line of the V$_1$+V$_3$ band of $^{13}$ C$_2$H$_2$ molecule by using the external cavity spectroscopy method. The frequency of laser has been stabilized to the saturated absorption spectrum. The relative contrast of the saturation spectrum is about 7 % with respect to the linear absorption and the linewidth is about 1.8 MHz. The frequency fluctuation of the stabilized LD is about $\pm$20 KHz during the sampling time 100 S.

The Wet Etching Rate of Metal Thin Film by Sputtering Deposition Condition (스퍼터링 증착 조건에 따른 금속 박막의 습식 식각율)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1465-1468
    • /
    • 2010
  • The wet etching is a process using chemical solution and occurring chemical reaction on substrate surface. when we do wet etching process, we have to consider stoichiometry, etching time and temperature of etchant for good resolution. In this experiment, we used Cr, Al andIndium-tin-oxide (ITO) metal and we deposited them with DC sputtering machine. The Cr thin film metal thickness is about $1300{\AA}$, ITO films show a low electrical resistance and high transmittance in the visible range of an optical spectrum and Ai film is used for signal line. We measured and analysed wet etching properties on the metal thin films.

A Study on the MTF Graphics using Simpson Approximation (심프슨 근사법을 이용한 MTF 그래프 작성에 관한 연구)

  • Che, Gyu-Shik;Chang, Won-Seok;Oh, Jake
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.401-408
    • /
    • 2012
  • There is a clear need for characterizing optical components with the growing role played by optical devices in measurement, communication, and photonics. A basic and useful measuring parameter to meet this need, especially for imaging systems, is the Modulation Transfer Function, or MTF. Over the past few decades new instrument, including the laser interferometer, the CCD camera, and the computer have revolutionized the measurement and calculation of the MTF. This has made what was tedious and involved into virtually an instantaneous measurement. We proposed a Simpson approxiamtion method to create MTF graph and illustrated real example to verify its method in this paper. This method is very useful while it is very useful because its error is very minor and small although its approximation.

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

Thermal Characteristics of the design on Residential 13.5W COB LED Down Light Heat Sink (주거용 13.5W COB LED 다운라이트 방열판 설계에 따른 열적 특성 분석)

  • Kwon, Jae-hyun;Lee, Jun-myung;Kim, Hyo-jun;Kang, Eun-young;Park, Keon-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • There are several severe problems for LED device, the next generation's economy green lighting: as the temperature increases, the lamp efficiency decreases; if the temperature is over $80^{\circ}C$, the lifetime of lighting decreases; Red Shift phenomenon that wavelength of spectrum line moves toward long wavelength occurs; and optical power decreases as $T_j$ increases. Thus, Heat sink design that can minimize the heat of LED device is currently in progress. While the thermal resistance of COB Type LED was reduced by direct coupling of LED chip to the board, residential 13.5W requires Heat sink in order resolve heat issue. This study designed Heat Sink suitable for residential 13.5W COB LED down-light and selected the optimum Fin thickness through flow simulation that packaged the designed Heat Sink and 13.5W COB. And finally it analyzed and evaluated the thermal modes using contacting thermometer.

An Implementation of Forwarding Engine supporting Various Physical Interfaces based on Network Processor (다양한 물리 접속을 지원하는 네트워크 프로세서 기반 포워딩 엔진 구현)

  • Park Wanki;Kim Daeyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.23-28
    • /
    • 2005
  • Recently, new concept, NP(Network Processor) was emerged into communication systems to cope with the various service requirements from Internet users. NP is an unique promising technique to capable of implementing of the packet processing in wire-speed and providing the flexibility for supporting the newly network services, having satisfied with implementation using hardware and software respectively in past, This paper deals with the implementation techniques and evaluation results of the line card capable to do packet forwarding function with packet processing power of wire-speed and applicable to various physical interfaces. There are several interfaces of POS, Gigabit ethernet and EPON in E-OLT(EPON Optical Line Terminal) system of PATH(Photonic Access To Home) network. Therefore, the E-OLT's packet forwarding engine have to support various subscriber's interface in wire speed. Our system is implemented the subscriber's card in daughter board and the setup procedure is done by system firmware based on the module's identifier acquired from installed physical board.

Study on the Dislocation Structure and Work Hardening of Single-crystal L12-Ni3Al Intermetallic Compounds Prepared by Bridgman Method

  • Chang-Suk Han;Chang-Hwan Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.215-220
    • /
    • 2024
  • Slip lines and dislocation structures developed by deformation at 77 K, 292 K and 500 K have been investigated by an optical microscope and a high-voltage electron microscope. Slip patterns after the deformation by 4-5% at 77 K and 500 K are compared. From the slip line geometry, operation of both primary and secondary {111} slips have been confirmed. However, the primary slip lines formed at 77 K appear coarser and more pronounced than those at 500 K. This indicates that a larger number of dislocations have moved on the same plane at 77 K. Another characteristic difference noted here is that the slip lines are straight and pass through the specimen from one end to the other at 77 K. On the contrary, slip lines are rather faint at 500 K. The typical change found at 77 K is the increase in the [$0{\bar{1}}1$] dipole dislocations and generation of the [$10{\bar{1}}$] screw dipoles upon increase in the strain from 1.2% to 5.2%. This is the indication that the straight dipole dislocations were formed by a pinning effect due to jogs generated by mutual cutting between primary and secondary dislocations. Extremely fine slip has been noted after deformation at 500 K indicating that the usual Frank-Read source is not operative at high temperatures due to the strong KW locking.

A Study on the Compensation of Thermal Errors for Phase Measuring Profilometry (PMP 형상 측정법의 열 변위 보정에 관한 연구)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.598-603
    • /
    • 2019
  • Three-dimensional shape measurement technology is used in various industries. Among them, optical three-dimensional shape measurement techniques based on the optical trigonometry are mainly used in the field of semiconductor product inspection, where large quantities of three-dimensional shape measurements are made daily in factories and fine measurements are also required. The light source and the drive circuit, which are components of three-dimensional measurement equipment based on this optical trigonometry, produce heat generated by prolonged operation, and may be exposed to conditions where the ambient temperature is not constant, resulting in temperature-induced measurement errors. In this study, the compensation method of the Thermal Errors for Phase Measuring Profilometry is proposed. Three-Dimensional Shape Measurement Equipment based on Phase Measuring Profilometry is implemented to measure the height of an object and ambient temperature for 10 Hours, and a regression line was obtained line by making simple linear regression using measured temperature and height values. This regression line was used to correct the error of the height measurement according to the temperature, and thermal error was from 139.88 um(Micrometer) to 13.12 um.