• 제목/요약/키워드: On-chip Packaging

검색결과 318건 처리시간 0.025초

고전류 스트레싱하에서 의 ACF플립칩의 신뢰성 해석에 관한 연구

  • 권운성;백경욱
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.247-251
    • /
    • 2002
  • In this paper the maximum current carrying capability of ACAs flip chip joint is investigated based on two failure mechanisms: (1) degradation of the interface between gold stud bumps and aluminum pads; and (2) ACA swelling between chips and substrates under high current stress. For the determination of the maximum allowable current, bias stressing was applied to ACAs flip chip joint. The current level at which current carrying capability is saturated is defined as the maximum allowable current. The degradation mechanism under high current stress was studied by in-situ monitoring of gold stud bump-aluminum pad ACA contact resistance and also ACA junction temperature at various current level. The cumulative failure distributions were used to predict the lifetime of ACAs flip chip joint under high current stressing. These experimental results can be used to better understand and to improve the current carrying capability of ACA flip chip joint.

  • PDF

CSP + HDI : MCM!

  • Bauer, Charles-E.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.35-40
    • /
    • 2000
  • MCM technology languished troughout most of the 1990's due to high costs resulting from low yields and issues with known god die. During the last five years of the decade new developments in chip scale packages and high density, build up multi-layer printed wiring boards created new opportunities to design and produce ultra miniaturized modules using conventional surface mount manufacturing capabilities. Focus on the miniaturization of substrate based packages such as ball grid arrays (BGAs) resulted in chip scale packages (CSPs) offering many of the benefits of flip chip along with the handling, testing, manufacturing and reliability capabilities of packaged deviced. New developments in the PWB industry sought to reduce the size, weight, thickness and cost of high density interconnect (HDI) substrates. Shrinking geometries of vias and new constructions significantly increased the interconnect density available for MCM-L applications. This paper describes the most promising CSP and HDI technologies for portable products, high performance computing and dense multi-chip modules.

  • PDF

반도체 3차원 칩 적층을 위한 미세 범프 조이닝 기술 (Micro-bump Joining Technology for 3 Dimensional Chip Stacking)

  • 고영기;고용호;이창우
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.865-871
    • /
    • 2014
  • Paradigm shift to 3-D chip stacking in electronic packaging has induced a lot of integration challenges due to the reduction in wafer thickness and pitch size. This study presents a hybrid bonding technology by self-alignment effect in order to improve the flip chip bonding accuracy with ultra-thin wafer. Optimization of Cu pillar bump formation and evaluation of various factors on self-alignment effect was performed. As a result, highly-improved bonding accuracy of thin wafer with a $50{\mu}m$ of thickness was achieved without solder bridging or bump misalignment by applying reflow process after thermo-compression bonding process. Reflow process caused the inherently-misaligned micro-bump to be aligned due to the interface tension between Si die and solder bump. Control of solder bump volume with respect to the chip dimension was the critical factor for self-alignment effect. This study indicated that bump design for 3D packaging could be tuned for the improvement of micro-bonding quality.

CMOS 이미지 센서용 Au 플립칩 범프의 초음파 접합 (Ultrasonic Bonding of Au Flip Chip Bump for CMOS Image Sensor)

  • 구자명;문정훈;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제14권1호
    • /
    • pp.19-26
    • /
    • 2007
  • 본 연구의 목적은 CMOS 이미지 센서용 Au 플립칩 범프와 전해 도금된 Au 기판 사이의 초음파 접합의 가능성 연구이다. 초음파 접합 조건을 최적화하기 위해서, 대기압 플라즈마 세정 후 접합 압력과 시간을 달리하여 초음파 접합 후 전단 시험을 실시하였다. 범프의 접합 강도는 접합 압력과 시간 변수에 크게 좌우되었다. Au 플립칩 범프는 상온에서 성공적으로 하부 Au 도금 기판과 접합되었으며, 최적 조건 하에서 접합 강도는 약 73 MPa이었다.

  • PDF

Effects of Silica Filler and Diluent on Material Properties of Non-Conductive Pastes and Thermal Cycling Reliability of Flip Chip Assembly

  • Jang, Kyung-Woon;Kwon, Woon-Seong;Yim, Myung-Jin;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제10권3호
    • /
    • pp.9-17
    • /
    • 2003
  • In this paper, thermo-mechanical and rheological properties of NCPs (Non-Conductive Pastes) depending on silica filler contents and diluent contents were investigated. And then, thermal cycling (T/C) reliability of flip chip assembly using selected NCPs was verified. As the silica filler content increased, thermo-mechanical properties of NCPs were changed. The higher the silica filler content was added, glass transition temperature ($T_g$) and storage modulus at room temperature became higher. While, coefficient of thermal expansion (CTE) decreased. On the other hand, rheological properties of NCPs were significantly affected by diluent content. As the diluent content increased, viscosity of NCP decreased and thixotropic index increased. However, the addition of diluent deteriorated thermo-mechanical properties such as modulus, CTE, and $T_g$. Based on these results, three candidates of NCPs with various silica filler and diluent contents were selected as adhesives for reliability test of flip chip assemblies. T/C reliability test was performed by measuring changes of NCP bump connection resistance. Results showed that flip chip assembly using NCP with lower CTE and higher modulus exhibited better T/C reliability behavior because of reduced shear strain in NCP adhesive layer.

  • PDF

고속시스템을 위한 새로운 단일칩 패키지 구조 (A Novel Chip Scale Package Structure for High-Speed systems)

  • 권기영;김진호;김성중;권오경
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.119-123
    • /
    • 2001
  • In this paper, a new structure and fabrication method for the wafer level package(WLP) is presented. A packaged VLSI chip is encapsulated by a parylene(which is a low k material) layer as a dielectric layer and is molded by SUB photo-epoxy with dielectric constant of 3.0 at 100 MHz. The electrical parameters (R, L, C) of package traces are extracted by using the Maxwell 3-D simulator. Based on HSPICE simulation results, the proposed wafer level package can operate for frequencies up to 20GHz.

  • PDF

A Study on the Electrical Characteristics of Different Wire Materials

  • Jeong, Chi-Hyeon;Ahn, Billy;Ray, Coronado;Kai, Liu;Hlaing, Ma Phoo Pwint;Park, Susan;Kim, Gwang
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.47-52
    • /
    • 2013
  • Gold wire has long been used as a proven method of connecting a silicon die to a substrate in wide variety of package types, delivering high yield and productivity. However, with the high price of gold, the semiconductor packaging industry has been implementing an alternate wire material. These materials may include silver (Ag) or copper (Cu) alloys as an alternative to save material cost and maintain electrical performance. This paper will analyze and compare the electrical characteristics of several wire types. For the study, typical 0.6 mil, 0.8 mil and 1.0 mil diameter wires were selected from various alloy types (2N gold, Palladium (Pd) coated/doped copper, 88% and 96% silver) as well as respective pure metallic wires for comparison. Each wire model was validated by comparing it to electromagnetic simulation results and measurement data. Measurements from the implemented test boards were done using a vector network analyzer (VNA) and probe station setup. The test board layout consisted of three parts: 1. Analysis of the diameter, length and material characteristic of each wire; 2. Comparison between a microstrip line and the wire to microstrip line transition; and 3. Analysis of the wire's cross-talk. These areas will be discussed in detail along with all the extracted results from each type the wire.