• Title/Summary/Keyword: On-Wafer Measurement

Search Result 199, Processing Time 0.028 seconds

Microwave Frequency Responses of Novel Chip-On-Chip Flip-Chip Bump Joint Structures (새로운 칩온칩 플립칩 범프 접합구조에 따른 초고주파 응답 특성)

  • Oh, Kwang-Sun;Lee, Sang-Kyung;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1120-1127
    • /
    • 2013
  • In this paper, novel chip-on-chip(CoC) flip-chip bump structures using chip-on-wafer(CoW) process technology are proposed, designed and fabricated, and their microwave frequency responses are analyzed. With conventional bumps of Cu pillar/SnAg and Cu pillar/Ni/SnAg and novel Polybenzoxazole(PBO)-passivated bumps of Cu pillar/SnAg, Cu pillar/Ni/SnAg and SnAg with the deposition option of $2^{nd}$ Polyimide(PI2) layer on the wafer, 10 kinds of CoC samples are designed and their frequency responses up to 20 GHz are investigated. The measurement results show that the bumps on the wafers with PI2 layers are better for the batch flip-chip process and have average insertion loss of 0.14 dB at 18 GHz. The developed bump structures for chips with fine-pitch pads show similar or slightly better insertion loss of 0.11~0.14 dB up to 18 GHz, compared with that of 0.13~0.17 dB of conventional bump structures in this study, and we find that they could be utilized in various microwave packages for high integration density.

Fault Detection, Diagnosis, and Optimization of Wafer Manufacturing Processes utilizing Knowledge Creation

  • Bae Hyeon;Kim Sung-Shin;Woo Kwang-Bang;May Gary S.;Lee Duk-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.372-381
    • /
    • 2006
  • The purpose of this study was to develop a process management system to manage ingot fabrication and improve ingot quality. The ingot is the first manufactured material of wafers. Trace parameters were collected on-line but measurement parameters were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Therefore, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were used for data generation. Then, modeling was performed, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to control parameters. Secondly, rule extraction was performed to find the relation between the production quality and control conditions. The extracted rules can give important information concerning how to handle the process correctly. The dynamic polynomial neural network (DPNN) and decision tree were applied for data modeling and rule extraction, respectively, from the ingot fabrication data.

A Study on the Effect of Tip Radius of Diamond Stylus Machined by Ion Sputter in Surface Roughness Measurement (이온스파터 가공한 다이아몬드 촉침의 선단반경이 표면거칠기 측정에 미치는 영향)

  • Han, Eung-Gyo;No, Byeong-Ok;Yu, Yeong-Deok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.37-47
    • /
    • 1990
  • In accordance with the high precision of mechanical elements, it has been required to high precision in surface roughness measurement and, therefore, stylus tip radius is manufa- ctured less than 2 .mu. m through ion sputter machining. In this experiment, by suing ion sputter machined stylus pf fine tip, radius and lapping machined stylus, surface roughness of standard specimens, silicon wafer were measured and then Rmax, Ra, RMS value were investi- gatedaccording to the variation of tip radius of stylus. As a result, measuring error due to the variation of stylus tip radius in surface roughness measurement was decreased by using ion sputter machined stylus and also the measuring accuracy was improved. And the measuring variation of Ra, RMS calculated from correlation coefficient lager than 0.9 on the wave of short period and amplitude using ion sputter machined stylus of fine tip radius.

  • PDF

Development of Surface Acoustic Wave Sensor for Viscosity Measurement of Low Viscose Liquid Using Love Wave (Love파를 이용한 저점성 유체 점도 측정용 표면 탄성파 센서 개발)

  • Lee, Sang-Dae;Kim, Ki-Bok;Lee, Dae-Su
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.282-287
    • /
    • 2008
  • Love wave is one of the shear horizontal waves and it can propagate between two layers in liquid without energy loss. The SAW (surface acoustic wave) sensor using Love wave is very useful for real time measurement of the viscosity of liquid with high sensitivity. In this study, the 77 MHz and 155 MHz Love wave SAW sensors were fabricated and use to measure the viscosity of low viscous liquid. To generate the surface acoustic wave, the inter-digital transducers were fabricated on the quartz crystal wafer. In order to obtain the optimal thickness of the coating film (novolac photoresist) generating the Love wave on the surface of SAW device, theoretical calculation was performed. The performances of fabricated Love wave SAW sensors were tested. As test liquid, pure water and glycerol solutions having different concentrations were used. Since the determination coefficients of the regression equations for measuring the viscosity of liquid are greater than 0.98, the developed Love wave SAW sensors in this study will be very useful for precise measurement of viscosity of liquid.

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

A case study on the application of process abnormal detection process using big data in smart factory (Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구)

  • Nam, Hyunwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.99-114
    • /
    • 2021
  • With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

Design and Performance Evaluation of On-chip Antenna for Ultra Low Power Wireless Transceiver

  • Kwon, Won-Hyun
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.405-409
    • /
    • 2012
  • In this paper, on-chip antennas applicable to ultra low power wireless transceiver are designed and evaluated. Using $0.18{\mu}m$ SiGe MMIC process, 4 types of antenna with $1{\times}1mm^2$ dimensions are fabricated. The on-wafer measurement in a microwave probe station is conducted to measure the input VSWR and antenna performance of the designed on-chip antenna. Performance evaluation results show that developed antennas can be easily integrated into one-chip RF transceiver for ubiquitous applications, including WPAN and human body communications.

Effects of Ohmic Area Etching on Buffer Breakdown Voltage of AlGaN/GaN HEMT

  • Wang, Chong;Wel, Xiao-Xiao;Zhao, Meng-Di;He, Yun-Long;Zheng, Xue-Feng;Mao, Wei;Ma, Xiao-Hua;Zhang, Jin-Cheng;Hao, Yue
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.125-128
    • /
    • 2017
  • This study is on how ohmic area etching affects the buffer breakdown voltage of AlGaN/GaN HEMT. The surface morphology of the ohmic metal can be improved by whole etching on the ohmic area. The buffer breakdown voltages of the samples with whole etching on the ohmic area were improved by the suppression of the metal spikes formed under the ohmic contact regions during high-temperature annealing. The samples with selective etching on the ohmic area were investigated for comparison. In addition, the buffer leakage currents were measured on the different radii of the wafer, and the uniformity of the buffer leakage currents on the wafer were investigated by PL mapping measurement.

Formation of Silicon Particles Using $SiH_4$ pyrolysis at atmospheric pressure (상압에서 열분해법을 이용한 실리콘 입자 제조)

  • Woo, Dae-Kwang;Nam, Kyung-Tag;Kim, Young-Gil;Kim, Kwang-Su;Kang, Yun-Ho;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.126-129
    • /
    • 2007
  • The particle formation using pyrolysis has many advantages over other particle manufacturing techniques. The particles by pyrolysis have relatively uniform size and chemical composition. Also, we can easily produce high purity particles. Thus, we studied the formation of silicon particles by pyrolysis of 50% $SiH_4$ gas diluted in Ar gas. A pyrolysis furnace was used for the thermal decomposition of $SiH_4$ gas at $800^{\circ}C$ and atmospheric pressure. The aerosol flow from furnace is separated into two ways. The one is to the Scanning Mobility Particle Sizer (SMPS) for particle size distribution measurement and the other is to the particle deposition system. The produced silicon particles are deposited on the wafer in the deposition chamber. SEM measurement was used to compare the particle size distribution results from the SMPS. Depending on the experimental conditions, particles of high concentration in the $30\sim80$ nm size range were generated.

  • PDF

A study on the AlN crystal growth using its thin films grown on SiC substrate (SiC 기판상에 성장된 AlN 박막을 이용한 AlN 결정 성장에 관한 연구)

  • Yin, Gyong-Phil;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.170-174
    • /
    • 2018
  • AlN crystal is been developing in global site for many years and 1 inch diameter wafer was already developed but it is demanding the efforts for the better quality. On the other hand, also the 2-inch size is developing recently to reduce the unit cost for manufacturing and to use to fabrication of the UV LED chips. In this study, we tried to evaluate the possibility of bulk AlN crystals on his thin films by PVT method. The AlN thin film was grown on SiC single crystal 2" wafer by HVPE method. We successfully grew AlN bulk crystal of a thickness of 7 mm using its thin film of a thickness of $10{\mu}m$ as a seed crystal. The resultants of AlN crystals were identified by metallurgical microscope, optical stereographic microscope and DCXRD measurement.