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Fault Detection, Diagnosis, and Optimization of Wafer Manufacturing

Processes utilizing Knowledge Creation

Hyeon Bae, Sungshin Kim*, Kwang-Bang Woo, Gary S. May, and Duk-Kwon Lee

Abstract: The purpose of this study was to develop a process management system to manage
ingot fabrication and improve ingot quality. The ingot is the first manufactured material of
wafers. Trace parameters were collected on-line but measurement parameters were racasured
by sampling inspection. The quality parameters were applied to evaluate the quality. Therefore,
preprocessing was necessary to extract useful information from the quality data. First, statistical
methods were used for data generation. Then, modeling was performed, using the generated
data, to improve the performance of the models. The function of the models is to predict the
quality corresponding to control parameters. Secondly, rule extraction was performed to find
the relation between the production quality and control conditions. The extracted rules can give
important information concerning how to handle the process correctly. The dynamic
polynomial neural network (DPNN) and decision tree were applied for data modeling and rule
extraction, respectively, from the ingot fabrication data.

Keywords: Data mining, data model, knowledge creation, process optimization, rule extraction,

wafer fabrication.

1. INTRODUCTION

Wafer is an important material in semiconductor
industries. In recent years, the size of wafers has been
enlarged up to 300 mm, so that management is
essentially required and applied. The wafer
manufacturing process includes certain chemical
processes; there is a time delay that causes difficulty
in measurement and control. Among the chemical
processes, ingot fabrication is the most important, as
the quality of the ingot will definitely affect the
quality of the wafer.
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Over decades, many studies have been performed
for fault detection and yield improvement. An
adaptive resonance theory network [1] was used to
develop an intelligent system that will be able to
recognize defect spatial patterns to aid in the diagnosis
of failure causes. A data warehouse approach to the
automation of process zone-by-zone defect-limited
yield analysis [2], and SOI wafer-specific behavior
related to the intrinsic limitations of laser-scattering
defect detection [3], was presented. The modeling of
wafer fabrication was carried out, with the
calculations and results of random defect-limited yield
(DLY) using the deterministic yield model [4-7]. An
advanced methodology using intentionally created
defect arrays was implemented to enhance the
understanding of defect detection tools [8].

However, in past research, the relations between
qualities and control conditions have not been
ascertained for the topic. In this study, data mining
methods were applied to extract and gather the
information from the process data. The results can
improve the yield and quality of the wafer products.

It is difficult to select a proper method from various
data mining methodologies. In this study, the noble
data mining roadmap was proposed to assist in the
selection of an appropriate methodology. Based on the
roadmap, the selected methodologies were the data
models to predict process quality.

After selecting the method and procedure, data
acquisition from the target process is used in data
mining; in addition, the collected data should be
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sufficient in number and clean enough to perform the
data mining. The data on the quality of the wafer,
prepared for this paper, was not sufficient because
quality evaluation was performed according to a
sampling inspection, not a total inspection. To solve
these problems, the bootstrap method, an appropriate
data preprocessing method, was proposed to generate
data sufficient for a total inspection. This is a new
approach in terms of the industrial applications.

The final objectives of this study were focused on
detecting faults, adjusting the operational conditions
for process optimization and producing wafers having
no defects. To detect a fault, data mining tools to
analyze input-output data using models are required.

In Section 2, the target process is described. In
Section 3, important results such as the proposed road
map for data mining are explained. Section 4 explains
the applied data mining techniques. Section 5 shows
the experimental results. Finally, Section 6 concludes
the paper.

2. WAFER FABRICATION

2.1. Wafers for semiconductors

Wafers are used in manufacturing memory or non-
memory semiconductor chips. Several circuit masks
are mounted on one wafer by UV rays or electron
beams in assembly lines. As semiconductor
technology has developed, the wafer size has been
enlarged to mount more circuits on the wafer. In order
to enlarge the capacity of memory and non-memory

chips, larger-diameter wafers and strict quality
assessment are required from wafer manufacturers. To
cope with these requirements, optimization of wafer
fabrication is essential.

Wafer fabrication processes consist of crystal
growth, wafer slicing, wafer polishing and cleaning,
and epitaxial deposition. Some factors of the wafer
fabrication process cause defects. Nevertheless, it is
difficult to return and maintain the optimal solutions
for a given process condition, because real-time
analysis cannot be achieved in wafer fabrication. In
this study, we develop a management system and
evaluate its performance, especially as it analyzes
process data related to yield and quality in wafer
manufacturing and also as it controls the operating
parameters based on the process status.

2.2. Quality inspection of wafers

Ingot is the first material manufactured in wafer
fabrication. In ingot fabrication, the set-points for
handling of the position or rotation of ingots and the
control parameters are adjusted for quality
management. These operating parameters play an
important role in wafer quality and size control. Thus,
proper handling of the parameters is essential for
improvement of productivity and yield. The operating
parameters are used as inputs in modeling and rule
extraction. The quality parameters consist of five
concentration values, and six defect values. Four of
these were used for outputs in modeling and rule
extraction for the present study.
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Fig. 1. Data mining roadmap proposed in this study corresponding to categories.
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3. DESIGN OF DATA MINING ROADMAP

3.1. Data.mining roadmap [9-15]

Many data mining techniques can be applied in
knowledge extraction. Not all of the steps are used in
data mining. Selection of the techniques depends on
data features and mining targets. Therefore, selection
of proper mining techniques is very important for
reliable results.

In this study, we proposed a roadmap for data
mining. Fig. 1 shows the proposed roadmap. A
selection was made with reference to the methods and
procedures for diagnosis and optimization of the ingot
process by referring to the roadmap. The selected
methods were data generation with the bootstrap
method, prediction modeling of a dynamic polynomial
neural network, and rule extraction by decision tree.
Data generation was used for data preprocessing,
prediction modeling was applied to predict the quality
of wafers, and rule extraction was implemented to
generate causal relationship rules for the control
parameters.

3.2. Application of data mining
3.2.1 Data preprocessing in reducing data effects

The collected data from assembly lines may be
confined to specific cases; thus, the quality data are
not always uniformly distributed. Insufficient data
results in unreliable model prediction. It may be
difficult to extract rules that encompass the general
case with limited data. Low-frequency data can be
traced to error values in rule extraction. In order to
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solve these probler\ns, data preprocessing is required
by adding data and improving performance. In this
study, the Bootstrap method, which is a type of Monte
Carlo method, and multiple regression models were
applied to compensate for leakage data caused by
sampling inspection. This stal]ge of data generation is
part of the roadmap.

3.2.2 Data modeling in quality prediction

In prediction models, inputs can affect the
performance of the models. Selection of inputs
corresponding to data characteristics is necessary to
improve model performance, as unnecessary inputs
may strongly influence on prediction results.
Therefore, the principal inputs that greatly influence
model accuracy were selected. For evaluation of the
function, the dynamic polynomial neural network
(DPNN) was used. It has an advantage in that it
requires only minimal computation and is very useful
in modeling with high-dimension variables and a large
amount of data. This method can also select essential
inputs through the modeling stages, so that it may be
able to improve accuracy of models. This stage of
prediction modeling is a part of the roadmap.

3.2.3 Rule extraction in tuning parameters for quality
Following the quality prediction, the control
parameters had to be adjusted in order to improve
quality. The control parameter adjustment was
performed by their causal relation with respect to the
quality. In general, experienced operators tune the
control parameters based on know-how in the physical

Feedback countermeasures
(control process/diagnose faults)
Process I Prediction Quality
input output
Model: Quality
¥ quality
Wafer Ingot Process >O——
N S Stage 1  Stage2  Stage 3
X . Prediction &
inplits @ Fault &Failure Inference Results
Logic: Process
Process data: x  Quality data: y c: class Quallity Class
Class 1: Lower than
Training data Training data normal case
Process l Quality Class 2: Normal case
input class i
Testing data Testing data Inference Class 3: Higher than
normal case

Fig. 2. Structure of the proposed process management system with model- and rule-based systems.
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field. In this study, we wanted to extract rules using
parameter tuning without having to acquire expert
knowledge. We applied the decision tree algorithm to
rule extraction. The control conditions causing the
current quality could be conversely inferred based on
the extracted rules. Therefore, the quality can be
managed by inference rules. This stage of rule
extraction was the final part of the roadmap.

3.3. Process management system in ingot fabrication

The models designed and the rules extracted were
integrated into the proposed process management
system. This system will play an important quality
management role in ingot manufacturing. The quality
will be predicted by models and the control
parameters will be modified by rules on-line. The
final system is shown in Fig. 2.

4. APPLICATION OF DATA MINING TOOLS

The process data has two characteristics. First, trace
data for control parameters are collected by real-time
measurement, but measurement data for quality
parameters are measured by sampling inspection afier
manufacturing. Therefore, input and output data
cannot be one-to-one correspondent and target data
are insufficient. Second, quality data are included in
three cases. The problem of insufficient data results in
inadequate performance of the model. The bootstrap
method with data generation is then used. It is then
followed by construction of the prediction model
using the DPNN. The concentrated data extract
unreasonable rules in knowledge extraction. A
multiple regression model was used for data
generation in this case. Using the bootstrap method,
there is no relation between two variables.

4.1. Bootstrap method

The bootstrap method was presented by Efron and
Tibshirani. In this study, the term “bootstrap” refers to
a Monte Carlo simulation that treats the original
sample as a pseudo-population or as an estimate of the
population where no parametric assumptions are made
about the underlying population that generated the
random sample. Instead, we use the sample as an
estimate of the population.

4.2, Dynamic Polynomial Neural Network (DPNN)

A polynomial neural network (PNN) based on the
GMDH algorithm is of value to model a system from
many observed data and input variables. It is widely
used for modeling of dynamic systems, prediction,
and artificial intelligent control because of its
advantages in data handling. Fig. 3 includes the
recurrent inputs with one-to-n time-delayed output
variables. Thus, this type of PNN is called DPNN [16-
18]. The model of four-input-variables with the

outputs of node 13 and node 15 are represented as

Va=fi00,%)=a, @ X% +ax, +axx ta X a,

(1)
Y506 %) =0+ X, +@X, HOXY, +O +ax

where y; is the jth node of the ith layer. The final
output z is represented by the polynomial equation of
yi3 and yys as
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The least square estimator (LSE) is applied to
estimate the parameters at each node to minimize the
objective function. If there is m amount of data, the
output equations at each node are expressed as
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where x=1, y;=®@w, and yj is the jth node of the ith
layer.

Statistical learning networks have no loops. The
network is a tree of interconnected functions that
implement single input/output function. Several
composition schemes for network functions and
corresponding estimation algorithms are described in
[19]. The parameters are estimated by

m
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Fig. 3. Basic structure of DPNN.
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4.3. Decision tree

Learning by decision tree is a method to
approximate discrete-valued target functions, in which
a decision tree represents the learned function.
Learned trees can be used for representing sets of if-
then rules to improve human readability. This learning
method is popular among the inductive inference
methods [20]. Decision trees classify instances by
sorting them down the tree from the root to some leaf

node, which provides the classification of the instance.

Entropy and information gain are used at
classification. In order to separate each attribute, the
entropy of each attribute has to be assigned to the
given data set. The entropy, a measure of the impurity
in a collection of training examples, was calculated
according to equation (7), while p; is the proportion of
S belonging to class i. The attributes were divided into
¢ classes with minimum entropy.

Entropy(S)=Y —p,log, p, . (6)

i=1

5. EXPERIMENTAL RESULTS

5.1. Trace and measurement data of ingots

The collected data from ingot fabrication on the
factory assembly lines were provided by MEMC
Korea Co. There are several hundred parameters but
14 trace parameters and 11 measurement parameters
were important in terms of quality analysis of the
processes. The trace parameter data was collected
online but the measurement parameter data was
gathered by sampling inspection.

The left column of Table 1 shows the puller trace
data. Forty-eight process parameters are collected by
one data set per one minute from pullers. Among the
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parameter data, 18 important parameter values are
stored in the database and used for process analysis.
The position of the trace data represents the value of
the wafer position (body length) of the measurement
data. The second column of Table 1 shows the puller
measurement data collected oft-line. The data was
measured by sampling inspection after slicing the
ingot into wafers, and indicates the ingot growth-
related parameters. The wafer position corresponds to
the position of the trace data. The trace parameter
values were gathered by online measurement. The
problem of insufficient data exists in modeling or at
the stage of rule extraction. In this study, one set of
puller data was added with data generated at the
preprocessing stage at which the number of the target
data can be the same as that of the input data. Fig. 4
shows the data interpolation.

Table 1. Trace and measurement parameters of wafer.

Trace parameter Measurement parameter
OBSERV_TIME POSITION
POSITION OXYGEN
SD_ROT_SET ORG
SD_ROTATION RES
SD_LIFT_SET RRG
SD_LIFT SPV
CR_LIFT D_DEFECT
CR_POSITION I DEFECT
CR_ROTATE OISF
CZ_DIA SWIRL
CZ_DIA_SET SLIP
AR_GAS_FLOW LLPD |
CHAMB_PRESS
UP_MAG_LOAD
LO_MAG_LOAD
HEAT_POWER

Trace data (control conditions) Measure data (product qualities)

x1 x2 | x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 | y5
18.00 ] 1.20 J0.11 | 56.20 J 5.00 | 204.91 | 75.55 |24.40 | 18.03 | 17.97 | 114.88 15.04 |-14.11 ] 10.95 | 3.30
17.98 |1.04 | 0.12 | 56.20 | 5.00 |204.84 | 77.15 |24.40 [ 18.00 | 17.94 [ 114.90 11.57 | -2.79 110.73 {2.70
18.00 | 1.08 | 0.12 [ 56.30 | 5.00 | 205.25 | 78.15 |24.60 [17.97 | 17.91 [ 114.91 * +6-+4 _‘
18.01 | 1.21 [0.14 | 56.50 [ 5.00 | 206.07 | 80.10 |24.20 [ 17.95 [ 17.88 | 114.82 11.79 | -5.85
18.04 | 0.82 | 0.09 [56.70 { 5.00 | 205.20 | 82.05 [24.20 [17.89 [17.85 | 114.80 10.72
18.03 | 1.38 | 0.11 | 56.70 | 5.00 | 206.01 | 83.45 [24.60 | 17.87 | 17.82 | 114.76 * * 10.69 ©
18.01 11.39 | 0.16 [ 57.00 | 5.00 | 206.34 | 85.45 |24.40 | 17.84 | 17.79 | 114.73 . * 10.71 ®
18.01 {1.45 {0.17 {57.10 | 5.00 | 206.86 | 87.40 |24.20 {17.81 | 17.74 | 114.70 * * « o
18.01 11.30 | 0.15 [ 57.20 [ 5.00 | 206.63 | 89.60 |24.80 {17.76 | 17.71 [ 114.65 10.68 8
18.01 |0.96 | 0.15 [57.50 | 5.00 | 206.63 | 91.55 |24.60 [17.73 | 17.68 | 114.64 € +6-6F ‘5
18.01 | 1.01 | 0.12 | 57.50 | 5.00 | 206.77 | 93.40 |24.40 | 17.68 | 17.65 [ 114.64 10.7 8
18.00 1 0.98 1 0.11 [ 57.60 |5.00 | 206.50 | 94.50 |24.60 [17.65 | 17.62 [ 114.61 M . 10.68 oy
17.99 11.16 | 0.13 [ 57.70 [ 5.00 | 206.45 | 96.10 |24.40 117.63 | 17.59 | 114.59 * . ©
18.00 | 0.84 | 0.14 [57.90 [ 5.00 | 206.50 | 97.95 |24.60 [17.60 | 17.56 | 114.54 * . 1069 » E
18.03 | 0.62 [ 0.06 | 78.80 | 5.01 | 206.70 [116.90 [ 24.20 {12.88 | 12.82 | 111.17 10.25 g
18.01 10.62 | 0.06 | 78.80 | 5.03 | 206.79 | 116.85 | 24.20 [ 12.85 | 12.79 [ 113.12 11.47 | -2.71 ]10.29 1 1.03
18.05 10.62 [0.06 | 78.90 | 5.02 | 206.83 | 116.90 | 24.20 [ 12.82 [ 12.79 | 113.09 < i
18.03 ] 0.62 [ 0.06 | 78.90 | 5.03 | 206.86 | 116.85 | 24.20 {12.82 [ 12.79 | 113.11 10.2
18.04 |0.62 | 0.06 [ 79.10 |5.04 | 206.87 | 116.85 | 24.20 [ 12.82 | 12.76 [ 111.30 10.19 L

Fig. 4. Data generation using the bootstrap method to fill in the missing data.
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5.2. Quality prediction and variable selection

The process of wafer manufacturing is a chemical
process, and the product quality can be measured
following fabrication. When quality is predicted by
current control conditions, the manufacturing process
can be effectively operated. Selection of the modeling
stage using DPNN is discussed, based on the
roadmap.

5.2.1 Data modeling using one set of puller data (Case 1)

Figs. 5 to 8 show the test results using the trained
DPNN model with unobserved data. The prediction
models were designed for quality prediction
corresponding to Oxygen, ORG (Oxygen Gradient),
RES (Resistivity), and RRG (Resistivity Gradient). In
the case of RES, the model can be designed by one
puller with sufficient data. In addition, the model
performance is also adequate to predict the quality of
wafers with RES. However, three other parameter data

are not sufficient to design a good performance model.

The model was not trained well with one puller data.

16 . - . P - s
—o— Actual output —cEstimated output

14

Oxygen
S

10 ¢

Data [n]

Fig. 5. Prediction results for Oxygen values using one
set of puller data (Case 1).

40 . O

20

ORG
=3

-20

40 ORI . TR

Data [n]

Fig. 6. Prediction results for ORG values using one
set of puller data (Case 1).

5.2.2 Advanced modeling with new data (Case 2)

The preprocessing stage was required to
compensate for weak points caused by insufficient
data before applying the main data mining techniques.
The bootstrap method is used to solve the data
problem. The bootstrap method can generate
reasonable data to design the data models and improve
the model performance. Figs. 9 and 10 show the
improved results augmented by data generation. AR
gas flow, chamber pressure and heat power have
strong influence on the wafer quality, so these have to
be carefully handled in fabrication processes.

5.2.3 Comparison of the model performances accord-
ing to data sets

Table 2 shows the comparison of results for two
cases of modeling. In Case 1, the models were
designed for one puller with insufficient data, so that
an over-fitting problem occurred. This means that a
model trained by insufficient data cannot ensure the
good performance of models. In Case 2, the model

14 - - - N
— Actual output wEstimated output

12 ¢

RES

Fig. 7. Prediction results for RES values using one set
of puller data (Case 1).

—o—Actual output w3 Estimated output

1 2 3
Data [n]

Fig. 8. Prediction results for RRG values using one
set of puller data (Case 1).
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16 - - = - e - OO . e -
—o= Actual output w.cs Estimated output

10

Data [n}

Fig. 9. Prediction results for Oxygen values using a
data set generated by a bootstrap method
(Case 2).

7 T

20

ORG
=3

-20

B O S S SR

Data [n]

Fig. 10. Prediction results for ORG values using a
data set generated by a bootstrap method
(Case 2).

Table 2. Comparison of results between both cases.

Value |Case| Oxygen ORG RES RRG
Learning | | [9-7089e-015/4.8174¢-014| 0.0632 |4.5275¢-016
error 2 0.4550 1.2730 0.3005 0.8512

Prediction| 1 | 14422 | 80759 | 0.043938 | 1.6293

error 2 0.29528 1.8733 0.10423 1.2942
Selected | | 3 5 3 3
layer b) 4 4 4 3

trained stably by data addition using the bootstrap
method showed good performance. The results
indicate that statistical data generation can reduce the
effect of insufficient data. It is difficult to analyze the
relationship between inputs and outputs using field
data as field data is often insufficient for modeling.
Thus, data preprocessing is required. In this study, an
adequate descriptive model was designed by data
generation.

Bt o ingot Quaisy
Learining Resutt
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Oupdthangs | D%

. Osygon:
sk, {89232 rpmal
o
e, 1
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(TRTT Selected Layer
3
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150 W fobovemt | Slectnd tpus:

RG ©
5850/

Fig. 11. Developed GUI window for data modeling.

Fig. 11 shows the GUI window for data modeling
that includes the functions for data collection,
preprocessing, and modeling.

5.3. Inference of control parameters based on rule
extraction

The quality of wafers is evaluated according to a

specific range. If the quality is out bound, the wafer

will be considered defective. Therefore, the control

parameters need to be determined in order to

manufacture high-quality wafers.

In several fields, operators determine the control
parameters by analyzing the quality and control
conditions of manufactured ingots. In this case,
operators usually use know-how that is defined as
rules. Thus, it is suitable to extract the rules for
determining operating conditions with respect to
quality levels based on tree logics. The logic can
combine the expert’s knowledge with the rules
extracted from data, and efficient systems can be
constructed by knowledge and data. The rules,
showing the relationship between operating conditions
and qualities, are generated at the rule extraction stage
of the proposed roadmap.

5.3.1 Rule generation from whole puller data

The rule extraction was not properly carried out
with one puller data as they do not have several
classes of qualities. A total of 10 sets of puller data are
used for rule generation with respect to Oxygen, ORG,
RES, and RRG, respectively, and classified as Class 1,
Class 2, and Class 3. Class 1 was lower than the
minimum value in the normal range, Class 2 was in
the normal range, and Class 3 was higher than the
maximum value in the normal range.

Figs. 12 to 13 show the rules generated by the
decision tree algorithm. In Fig. 13, the rules for
Oxygen, with two branches, are very simple. The tree
indicates that just xz has influence on Oxygen. There



Fauit Detection, Diagnosis, and Optimization of Wafer Manufacturing Processes utilizing Knowledge Creation 379

x8>76.85

Class 2

Class 3

Fig. 12. Extracted rules for Oxygen with raw data sets.

x8<=76.85

Class 1

Class 2

Fig. 13. Extracted rules for ORG with raw data sets.

is no rule on Class 1 as the collected data has just two
range values. Fig. 13 shows that classification for
ORG is similar to the one for Oxygen. Thus, one can
infer that the principal control parameters of Oxygen
and ORG are similar in ingot manufacturing. One
difference is that the rules for ORG are divided into
Class 1 and Class 2. However, if xg is higher than
76.85, the input cases of both Oxygen and ORG are
classified as Class 2. The performance of classification
for RES was the best among the four parameters
because the RES data was sufficient to design the rules.
For the RRG, the rules were not generated because all
of the collected data was included in Class 2.

5.3.2 Advanced rule extraction using data generation

Unlike data modeling, the bootstrap method for
data generation is not suitable at the stage of rule
extraction. As for output data that are generated with
no consideration of the relationship to input
parameters, the bootstrap method is also not
appropriate for the mechanism of rule extraction. In
this study, multiple regression models were used to
generate target data with respect to control inputs. In
practice, the performance of rule generation was
improved by data addition generated by the regression
model, and the classification model was stable to the
several cases.

Fig. 14 shows the extracted rules for Oxygen data;
they are pruned rules because the original rules are too
complicated to illustrate. The rules were pruned by the
cross-validation method, as shown in Fig. 15. The best
node was determined by the validation, and then
pruning was achieved. In practical cases, pruned rules
are applied for simple application and high
performance.

Class2 : Class1

X11<117.683

Ciass3

Class2 Class3 Class2

Class2 Class3

Class2 Class3

Fig. 14. Constructed tree for Oxygen with generated

data sets.
0.22 T T T T T
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Fig. 15. Selection of the best node for Oxygen.

5.3.3 Comparison of performance of inference rules

As shown in Table 3, without data generation, only
RES data could be extracted to reasonable rules. Also,
the performance of inference rules is satisfied, but the
proper rule extraction of the other three data sets was
difficult because of unfair data. In particular, all RRG
data are included in the normal range as Class 2, so
the rules for Class 1 and Class 2 were not generated in
this study. To solve this problem, the regression model
was applied for data generation that is different from
that of modeling.

By examining the results of rule extraction, the
performance of rules can be improved by data
generation using the regression model. The RRG data
was not generated into rules caused by unfair data, but
the rules were extracted by data generation. To be sure
the results cannot be completely reliable, because the
virtual data (generated data) was used for
compensation. However, the relationship between
input and output parameters in data generation was
considered by using the regression model; thus, this
processing is reasonable for a goal such as decision
support.
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Table 3. Comparison of rule generation for three

variables.
ariables] Oxygen ORG RRG
Values Size Error Size Error Size Error
fopuller |y agsw) | 2 f209%) [ 1| 00%)
Ge‘;;zted 53| 372.6%) | 3 | 302%) | 16 | 8(0.6%)

Extracted rules

Fig. 16. Developed GUI window for rule generation.

Fig. 16 shows the GUI window for rule extraction
that also includes several functions such as data
collection, preprocessing, and generating rules.

5. CONCLUSIONS

The ingot fabrication process is one of the most
important sub-processes in wafer manufacturing. In
ingot fabrication, quality inspection is accomplished
by product sampling testing. Afterwards, the control
parameter is adjusted by an operator’s action
corresponding to the quality. Therefore, it is necessary
to predict the quality with respect to current control
parameters and to handle the parameters effectively.
This function can be useful for low-defect wafer
fabrication. However, it is difficult to design models
or rules using collected data from the field because the
data is gathered by sampling inspection. In this study,
we used the bootstrap method and multiple regression
models for data generation. Next, we designed models,
and extracted rules using the DPNN and decision tree,
respectively. Through various stages, the models and
rules can be improved and their performance was
reasonable.

One aim of this study was to design a roadmap for
data mining, because it is difficult to determine which
method is the best for a given target plant. Here, we
proposed a roadmap, based on which the applied
methods were selected. The models will be utilized in
the future to integrate both the diagnosis and the
optimization systems of the ingot fabrication process.
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