DOI QR코드

DOI QR Code

Microwave Frequency Responses of Novel Chip-On-Chip Flip-Chip Bump Joint Structures

새로운 칩온칩 플립칩 범프 접합구조에 따른 초고주파 응답 특성

  • Oh, Kwang-Sun (Department of Radio Science and Engineering, Chungnam National University) ;
  • Lee, Sang-Kyung (Department of Radio Science and Engineering, Chungnam National University) ;
  • Kim, Dong-Wook (Department of Radio Science and Engineering, Chungnam National University)
  • Received : 2013.10.02
  • Accepted : 2013.11.19
  • Published : 2013.12.31

Abstract

In this paper, novel chip-on-chip(CoC) flip-chip bump structures using chip-on-wafer(CoW) process technology are proposed, designed and fabricated, and their microwave frequency responses are analyzed. With conventional bumps of Cu pillar/SnAg and Cu pillar/Ni/SnAg and novel Polybenzoxazole(PBO)-passivated bumps of Cu pillar/SnAg, Cu pillar/Ni/SnAg and SnAg with the deposition option of $2^{nd}$ Polyimide(PI2) layer on the wafer, 10 kinds of CoC samples are designed and their frequency responses up to 20 GHz are investigated. The measurement results show that the bumps on the wafers with PI2 layers are better for the batch flip-chip process and have average insertion loss of 0.14 dB at 18 GHz. The developed bump structures for chips with fine-pitch pads show similar or slightly better insertion loss of 0.11~0.14 dB up to 18 GHz, compared with that of 0.13~0.17 dB of conventional bump structures in this study, and we find that they could be utilized in various microwave packages for high integration density.

본 논문에서는 칩온웨이퍼(Chip on Wafer: CoW) 공정기술을 이용한 새로운 칩온칩(Chip on Chip: CoC) 플립칩 범프 구조들을 제안하여 설계, 제작하고, 초고주파 영역에서의 응답 특성을 분석하였다. Cu 필러(Pillar)/SnAg, Cu 필러/Ni/SnAg의 기존 범프들, 그리고 SnAg, Cu 필러/SnAg, Cu 필러/Ni/SnAg를 Polybenzoxazole(PBO)로 보호한 새로운 범프들을 구성하여 웨이퍼의 $2^{nd}$ Polyimide(PI2) 층의 도포 유무에 따라 10가지 형태의 CoC 샘플들을 구조 설계하였고, 20 GHz까지의 주파수 특성이 고찰되었다. 측정 결과를 고려할 때 PI2 층이 도포된 소자들이 본 실험에 사용된 배치 플립칩 공정에 더 적합함을 알 수 있었고, 18 GHz에서 평균 0.14 dB의 삽입 손실을 보였다. 미세 패드 간격을 가지는 칩의 패키지 용도로 새로 개발된 범프들의 삽입 손실(0.11~0.14 dB)은 기존 범프들의 삽입 손실(0.13~0.17 dB)과 비교해 18 GHz까지 유사한 성능을 보이거나, 다소 좋은 특성을 보여 높은 집적도를 요구하는 다양한 초고주파 패키지에 활용될 수 있음이 확인되었다.

Keywords

References

  1. L. F. Miller, "Controlled collapse reflow chip joining", IBM J. Res. Dev., 13, 1969.
  2. G. Baumann, H. Richter, A. Baumgartner, D. Ferling, R. Heilig, D. Hollmann, H. Muller, H. Nechansky, and M. Schlechtweg, "51 GHz frontend with flip chip and wire bond interconnections from GaAs MMICs to a planar patch antenna", IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1639-1642, May 1995.
  3. Minjae Lee, Min Yoo, Jihee Cho, Seungki Lee, Jaedong Kim, Choonheung Lee, Daebyoung Kang, Curtis Zwenger, and Robert Lanzone, "Study of interconnection process for fine pitch flip chip", IEEE 59th Electronic Components and Technology Conference( ECTC), pp. 720-729, May 2009.
  4. Chun-Long Wang, Ruey-Beei Wu, "Modeling and design for electrical performance of wideband flipchip transition", IEEE Trans. Advanced Packaging, vol. 26, no. 4, pp. 385-391, Nov. 2003. https://doi.org/10.1109/TADVP.2003.821086
  5. Yue-ming Hsin, Yu-An Liu, Che-ming Wang, Weikuo Huang, and Tsung-jung Yeh, "27 GHz flip-chip assembled pHEMT oscillator", CS MANTECH Conference, pp. 127-129, Apr. 2006.
  6. C. Karnfelt, H. Zirath, J. P. Starski, and J. Rudnicki, "Flip chip assembly of a 40-60 GHz GaAs microstrip amplifier", 34th European Microwave Conference, vol. 1, pp. 89-92, Oct. 2004.
  7. J. Sutanto, D. H. Kang, S. Y. Ma, J. H. Yoon, K. S. Oh, K. R. Park, R. Lanzone, and R. Huemoeller, "Development of chip-on-chip with face to face technology as a low cost alternative for 3D packaging", IEEE 63rd Electronic Components and Technology Conference(ECTC), pp. 955-965, May 2013.
  8. Andrea Jentzsch, Wolfgang Heinrich, "Theory and measurements of flip-chip interconnects", IEEE Trans. Microwave Theory and Techniques, vol. 49, no. 5, pp. 871-878, May 2001. https://doi.org/10.1109/22.920143
  9. Young K. Song, Chin C. Lee, "Flip-chip packaging configuration with coplanar strip lines for millimeter electromagnetic waves", IEEE 56th Electronic Components and Technology Conference(ECTC), pp. 1700-1705, May 2006.
  10. Agilent Technology, De-embedding Techniques in Advanced Design System, Agilent EEsof EDA, http://www.agilent.com/find/eesof.
  11. Chirag S. Patel, Kevin Martin, and James D. Meindl, "Electrical performance of compliant wafer level package", IEEE 51st Electronic Components and Technology Conference(ECTC), pp. 1380-1383, 2001.
  12. Woonghwan Ryu, Myung-Jin Yim, Seungyoung Ahn, Junho Lee, Woopoung Kim, Kyung-Wook Paik, and Joungho Kim, "High-frequency SPICE model of anisotropic conductive film flip-chip interconnections based on a genetic algorithm", IEEE Trans. on Components and Packaging Techologies, vol. 23, no. 3, pp. 542-545, Sep. 2000. https://doi.org/10.1109/6144.868855
  13. Dong Min Jang, Chunghyun Ryu, Kwang Yong Lee, Byeong Hoon Cho, Joungho Kiml, Tae Sung Oh, Won Jong Lee, Jin Yu, Kevin Martin and James D. Meindl, "Development and evaluation of 3-D SiP with vertically interconnected through silicon vias(TSV)", IEEE 57th Electronic Components and Technology Conference(ECTC), pp. 847-852, 2007.
  14. Rana J. Pratap, Stephane Pinel, Daniela Staiculescu, Joy Laskar, and Gary S. May, "Modeling and sensitivity analysis of circuit parameters for flip chip interconnects using neural networks", IEEE Advanced Packaging, vol. 28, no. 1, pp. 71-78, Feb. 2005. https://doi.org/10.1109/TADVP.2004.841772