• Title/Summary/Keyword: OFDMA 시스템

Search Result 253, Processing Time 0.025 seconds

Interference Localization for Cellular OFDMA Systems (셀룰러 OFDMA 시스템을 위한 간섭의 집중화)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.51-60
    • /
    • 2007
  • Cellular OFDMA systems may suffer from various amounts of inter-cell interferences according to subcarriers. If it is possible to estimate the interference level of each subcarrier, the performance can be improved by adjusting the magnitude of channel decoder input signals inversely proportional to the interference amounts. While conventional cellular systems prefer to use interference averaging techniques for mitigating inter-cell interferences, this paper shows that localizing inter-cell interferences to the reduced number of subcarriers can significantly improve the system performance assuming thatinterference estimation can be employed. If interference estimation is not used, it is more favorable to use interference averaging techniques to avoid excessive interference levels to certain subcarriers. On the other hand, if interference estimation can be employed, interference localization is more beneficial than interference averaging.

A Comparative Performance Analysis of High Resolution Direction Finding Algorithms in Wideband Mobile Environments (광대역 이동통신 환경에서 초 분해능 방향 탐지 알고리즘의 성능 비구 분석)

  • Yun Young-Ho;Park Yoon-Ok;Park Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.752-759
    • /
    • 2006
  • In this paper, the performances of representative high resolution direction finding algorithms are evaluated and compared in wideband mobile environments. The angular spread phenomenon in mobile environments is first investigated and then a vector channel model for wideband OFDMA signals is derived. A direction finding system architecture for OFDMA smart antenna systems is proposed and finally the performances of high resolution direction finding algorithms are evaluated in wideband mobile environments by taking the WiBro system as a target system.

High SNR Analysis of User-Multiplexing Technique Provisioning Delay QoS in OFDMA Systems (OFDMA 시스템에서 지연 QoS를 지원하는 2-D 사용자 다중화 기법에 대한 높은 SNR영역에서의 성능 분석)

  • Ahn, Seong-Woo;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, we study the throughput-delay tradeoff of OFDMA systems in context of 2-dimensional resource allocation, and analyze the effect of frequency diversity and user-multiplexing in time domain that has on delay QoS performance. Based on the analysis results, we investigate the impacts of delay QoS on spectral efficiency. In high SNR regime, the optimal DoM (degree of multiplexing) maximizing the spectral efficiency is identified. The results of the high SNR analysis can give us an intuition on an efficient resource allocation policy. Finally, through the simulation results, we verify that our approach with its optimal DoM yields substantial capacity gain.

Backoff-based random access algorithm for offering differentiated QoS services in the random access channels of OFDMA systems (OFDMA 시스템 상향 링크에서, 임의 접근 채널의 차별화된 서비스 품질 제공을 위한 Backoff 기반 임의 접근 알고리즘 및 그 성능 분석)

  • Lee, Young-Du;Koo, In-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.360-368
    • /
    • 2008
  • In this paper, in order that the various QoS(Qualify of Service)s that are required by different traffic class are guaranteed in the random access channels in multi-service multi-user OFDMA systems, the backoff-based random access algorithm is proposed and corresponding performance is analyzed in terms of the access success probability, the throughput, the average delay and the blocking probability. Through the numerical analysis, it is shown that the proposed backoff-based random access algorithm can provide the differentiated QoSs to random access attempts according to their service class.

Channel State-Aware Joint Dynamic Cell Coordination Scheme using Adaptive Modulation and Variable Reuse Factor in OFDMA (OFDMA 하향링크에서 적응적 변조와 여러 개의 재사용 지수를 동시에 사용하고 채널 상태를 고려한 동적 셀 코디네이션)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.24-33
    • /
    • 2007
  • In this paper, two different dynamic cell coordination strategies for frequency flat and selective fading are proposed for efficient subcarrier allocation in the joint consideration of adaptive modulation and variable frequency reuse in the channel-aware OFDMA downlink multicellular environment. Compared to a conventional OFDMA system without cell coordination, where system throughput may become degraded due to the persistent interference from other cells, the proposed system dynamically allows RNC to apply different reuse factors on each subchannel and scheduling in consideration of channel and interference conditions of individual users so as to increase the system throughput and guarantee QoS of each user. In a frequency flat fading, the dynamic scheme with the proposed scheduling achieves on average three times larger throughput than the conventional dynamic scheme [8]. In a selective fading channel, the proposed schemes showed 2.6 times as large throughput as that of a single reuse factor of one for all subchannels.

Performance Analysis of MIMO-OFDMA System Applying Dynamic Resource Allocation (동적 자원 할당 기법을 적용한 MIMO-OFDMA 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2008
  • The adaptive resource optimization problem in multi-input multi-output orthogonal frequency division multiple access (MIMO-OFDMA) systems is addressed. This paper, adaptive modulation and coding(AMC) and power control algorithms is proposed with SFC(Space-Frequency Coding), which aims to maximize the system capacity based on the CQI(Channel Quality Information). Firstly, power level is decided to each sub-channels with received feedback signal to noise ratio(SNR). In the second step, sub-carriers are allocated according to modulation type. Simulation results show that the proposed algorithm achieves a better performance than conventional algorithm in terms of capacity.

Performance of a Coded Frequency Hopping OFDMA System with an Iterative Receiver in Uplink Cellular Environments (상향 링크 셀룰러 환경에서 반복 수신 기법을 적용한 부호화된 주파수 도약 OFDMA 시스템의 성능)

  • Kim, Yun-Hee;Kang, Sung-Kyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1108-1115
    • /
    • 2005
  • In this paper, we propose a practical iterative channel estimation and decoding method for an LDPC-coded frequency hopping OFDMA system in the uplink of a packet-based cellular system. In the method, the channel gain and noise variance are iteratively estimated with both pilot symbols and LDPC decoder outputs to provide more reliable decoding metrics in intercell interference (ICI) environments. In addition, the channel correlation coefficient is also estimated to select proper filter coefficients according to the channel variation rate. Through simulations under the various channel conditions and different receiver configurations, it is shown that the proposed iterative receiver improves the performance without boosting the pilot power and mitigates the adverse effects of the non-uniform ICI.

Performance Analysis of OFDMA Uplink Systems with Symbol Timing Misalignment (사용자간 상대적인 시간오차에 의한 OFDMA 역방향 시스템의 성능 분석)

  • Park Myonghee;Hong Daesik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents our investigation for the effect of symbol timing errors in orthogonal frequency division multiple access (OFDMA) uplink systems. We express the symbol timing errors between users as the symbol timing misalignments with respect to the desired user. Then, we derive an explicit expression of the average effective signal-to-interference-plus-noise ratio. (SINR) as a function of the maximum value of the symbol timing misalignments. Based on the resulting SINR degradation, we evaluate the SINR gain with guard subcarriers in order to mitigate the effect of the symbol timing misalignments.

Joint Packet and Sub-carrier Allocation Scheme to Ensure Reliable Multimedia Service in OFDMA Multicast System (OFDMA 멀티캐스트 시스템에서 신뢰성 있는 멀티미디어 서비스를 보장하기 위한 패킷 및 서브 캐리어 할당 기법)

  • Gwak, Yong-Su;Kim, Yong-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.8-12
    • /
    • 2009
  • We propose BMPA(balanced multimedia packet allocation) scheme. This scheme considers the issue of optimal sub-carrier allocation in OFDMA multicast system. When RT(real time) packets and NRT(non-real time) packets arrive at the same time, BMPA scheme gives higher weight to RT packets than NRT packets and then, it allocates sub-carriers according to the total weight sum of packets in each user. This process acts as both packet scheduler and sub-carrier allocation. Therefore, each user receives multimedia packets with reliability. With simulation results, it shows that BMPA scheme ensures long-term system throughput and, in average RT packet delay, BMPA scheme greatly outperforms multi-user water-filling algorithm.

An Irregular Frequency Reuse Scheme for Cellular OFDMA Systems (셀룰러 OFDMA 시스템을 위한 불규칙적 주파수 재사용 방법)

  • Kim, Young-Serk;Ryu, Chul;Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-87
    • /
    • 2007
  • While conventional frequency reuse techniques for cellular communication systems divide frequency resources into multiple regions and each mobile is statically assigned to a certain frequency region, frequency reuse techniques for cellular OFDMA communication systems can be regarded as dynamic scheduling problems of finding best-fitted subcarriers for each packet transmission. Unlike conventional frequency reuse techniques allocating mutually exclusive frequency resources to adjacent cells, this paper proposes the use of a frequency reuse technique with irregular frequency allocation patterns assigned statically based on the cell numbers. This paper shows that the use of irregular frequency patterns can allow efficient interference avoidance and high data throughputs comparable to those with carefully planned frequency patterns.